|
from turtle import title |
|
import gradio as gr |
|
from transformers import pipeline |
|
import numpy as np |
|
from PIL import Image |
|
|
|
pipes = { |
|
"ViT/B-16": pipeline("zero-shot-image-classification", model="OFA-Sys/chinese-clip-vit-base-patch16") |
|
} |
|
|
|
inputs = [ |
|
gr.inputs.Image(type='pil', |
|
label="Image 输入图片"), |
|
gr.inputs.Textbox(lines=1, |
|
label="Candidate Labels 候选分类标签"), |
|
gr.inputs.Radio(choices=["ViT/B-16"], type="value", default="ViT/B-16", label="Model 模型规模"), |
|
gr.inputs.Textbox(lines=1, label="Prompt Template Prompt模板 ({}指代候选标签)", default="一张{}的图片。"), |
|
] |
|
images="festival.jpg" |
|
|
|
def shot(image, labels_text, model_name, hypothesis_template): |
|
labels = [label.strip(" ") for label in labels_text.strip(" ").split(",")] |
|
res = pipes[model_name](images=image, |
|
candidate_labels=labels, |
|
hypothesis_template=hypothesis_template) |
|
return {dic["label"]: dic["score"] for dic in res} |
|
|
|
iface = gr.Interface(shot, |
|
inputs, |
|
"label", |
|
examples=[["festival.jpg", "灯笼, 鞭炮, 对联", "ViT/B-16", "一张{}的图片。"]], |
|
description="""<p>Chinese CLIP is a contrastive-learning-based vision-language foundation model pretrained on large-scale Chinese data. For more information, please refer to the paper and official github. Also, Chinese CLIP has already been merged into Huggingface Transformers! <br><br> |
|
Paper: <a href='https://arxiv.org/abs/2211.01335'>https://arxiv.org/abs/2211.01335</a> <br> |
|
Github: <a href='https://github.com/OFA-Sys/Chinese-CLIP'>https://github.com/OFA-Sys/Chinese-CLIP</a> (Welcome to star! 🔥🔥) <br><br> |
|
To play with this demo, add a picture and a list of labels in Chinese separated by commas. 上传图片,并输入多个分类标签,用英文逗号分隔。可点击页面最下方示例参考。<br> |
|
You can duplicate this space and run it privately: <a href='https://huggingface.co/spaces/OFA-Sys/chinese-clip-zero-shot-image-classification?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14' alt='Duplicate Space'></a></p>""", |
|
title="Zero-shot Image Classification (中文零样本图像分类)") |
|
|
|
iface.launch() |