Spaces:
Runtime error
Runtime error
import gradio as gr | |
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler, LCMScheduler, AutoencoderKL,DiffusionPipeline | |
import torch | |
import numpy as np | |
from huggingface_hub import hf_hub_download | |
from safetensors.torch import load_file | |
import spaces | |
import os | |
import random | |
import uuid | |
def save_image(img): | |
unique_name = str(uuid.uuid4()) + ".png" | |
img.save(unique_name) | |
return unique_name | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
return seed | |
MAX_SEED = np.iinfo(np.int32).max | |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) | |
JX_pipe = StableDiffusionXLPipeline.from_pretrained( | |
"RunDiffusion/Juggernaut-X-Hyper", | |
vae=vae, | |
torch_dtype=torch.float16, | |
) | |
JX_pipe.to("cuda") | |
J10_pipe = StableDiffusionXLPipeline.from_pretrained( | |
"RunDiffusion/Juggernaut-X-v10", | |
vae=vae, | |
torch_dtype=torch.float16, | |
) | |
J10_pipe.to("cuda") | |
J9_pipe = StableDiffusionXLPipeline.from_pretrained( | |
"RunDiffusion/Juggernaut-XL-v9", | |
vae=vae, | |
torch_dtype=torch.float16, | |
custom_pipeline="lpw_stable_diffusion_xl", | |
use_safetensors=True, | |
add_watermarker=False, | |
variant="fp16", | |
) | |
J9_pipe.to("cuda") | |
def run_comparison(prompt: str, | |
negative_prompt: str = "", | |
use_negative_prompt: bool = False, | |
num_inference_steps: int = 30, | |
num_images_per_prompt: int = 2, | |
seed: int = 0, | |
width: int = 1024, | |
height: int = 1024, | |
guidance_scale: float = 3, | |
randomize_seed: bool = False, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
seed = int(randomize_seed_fn(seed, randomize_seed)) | |
if not use_negative_prompt: | |
negative_prompt = "" | |
image_r3 = JX_pipe(prompt=prompt, | |
negative_prompt=negative_prompt, | |
width=width, | |
height=height, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
num_images_per_prompt=num_images_per_prompt, | |
cross_attention_kwargs={"scale": 0.65}, | |
output_type="pil", | |
).images | |
image_paths_r3 = [save_image(img) for img in image_r3] | |
image_r4 = J10_pipe(prompt=prompt, | |
negative_prompt=negative_prompt, | |
width=width, | |
height=height, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
num_images_per_prompt=num_images_per_prompt, | |
cross_attention_kwargs={"scale": 0.65}, | |
output_type="pil", | |
).images | |
image_paths_r4 = [save_image(img) for img in image_r4] | |
image_r5 = J9_pipe(prompt=prompt, | |
negative_prompt=negative_prompt, | |
width=width, | |
height=height, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
num_images_per_prompt=num_images_per_prompt, | |
cross_attention_kwargs={"scale": 0.65}, | |
output_type="pil", | |
).images | |
image_paths_r5 = [save_image(img) for img in image_r5] | |
return image_paths_r3, image_paths_r4,image_paths_r5, seed | |
examples = ["A dignified beaver wearing glasses, a vest, and colorful neck tie.", | |
"The spirit of a tamagotchi wandering in the city of Barcelona", | |
"an ornate, high-backed mahogany chair with a red cushion", | |
"a sketch of a camel next to a stream", | |
"a delicate porcelain teacup sits on a saucer, its surface adorned with intricate blue patterns", | |
"a baby swan grafitti", | |
"A bald eagle made of chocolate powder, mango, and whipped cream" | |
] | |
with gr.Blocks(theme=gr.themes.Base()) as demo: | |
gr.Markdown("## One step Juggernaut-XL comparison 🦶") | |
gr.Markdown('Compare Juggernaut-XL variants and distillations able to generate images in a single diffusion step') | |
prompt = gr.Textbox(label="Prompt") | |
run = gr.Button("Run") | |
with gr.Accordion("Advanced options", open=False): | |
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True) | |
negative_prompt = gr.Text( | |
label="Negative prompt", | |
lines=4, | |
max_lines=6, | |
value="""(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, (NSFW:1.25)""", | |
placeholder="Enter a negative prompt", | |
visible=True, | |
) | |
with gr.Row(): | |
num_inference_steps = gr.Slider( | |
label="Steps", | |
minimum=10, | |
maximum=60, | |
step=1, | |
value=30, | |
) | |
with gr.Row(): | |
num_images_per_prompt = gr.Slider( | |
label="Images", | |
minimum=1, | |
maximum=5, | |
step=1, | |
value=2, | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
visible=True | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(visible=True): | |
width = gr.Slider( | |
label="Width", | |
minimum=512, | |
maximum=2048, | |
step=8, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=512, | |
maximum=2048, | |
step=8, | |
value=1024, | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance Scale", | |
minimum=0.1, | |
maximum=20.0, | |
step=0.1, | |
value=6, | |
) | |
with gr.Row(): | |
with gr.Column(): | |
image_r3 = gr.Gallery(label="Juggernaut-X",columns=1, preview=True,) | |
gr.Markdown("## [Juggernaut-X](https://huggingface.co)") | |
with gr.Column(): | |
image_r4 = gr.Gallery(label="Juggernaut-X-10",columns=1, preview=True,) | |
gr.Markdown("## [Juggernaut-XL-10](https://huggingface.co)") | |
with gr.Column(): | |
image_r5 = gr.Gallery(label="Juggernaut-XL-9",columns=1, preview=True,) | |
gr.Markdown("## [Juggernaut-XL-9](https://huggingface.co)") | |
image_outputs = [image_r3, image_r4, image_r5] | |
gr.on( | |
triggers=[prompt.submit, run.click], | |
fn=run_comparison, | |
inputs=[ | |
prompt, | |
negative_prompt, | |
use_negative_prompt, | |
num_inference_steps, | |
num_images_per_prompt, | |
seed, | |
width, | |
height, | |
guidance_scale, | |
randomize_seed, | |
], | |
outputs=image_outputs | |
) | |
use_negative_prompt.change( | |
fn=lambda x: gr.update(visible=x), | |
inputs=use_negative_prompt, | |
outputs=negative_prompt, | |
api_name=False, | |
) | |
gr.Examples( | |
examples=examples, | |
fn=run_comparison, | |
inputs=prompt, | |
outputs=image_outputs, | |
cache_examples=False, | |
run_on_click=True | |
) | |
if __name__ == "__main__": | |
demo.queue(max_size=20).launch(show_api=False, debug=False) |