Spaces:
Running
Running
import os | |
from joblib import load | |
from numpy import append, expand_dims | |
from pandas import read_json, to_datetime, Timedelta | |
from tensorflow.keras.models import load_model | |
class Utilities: | |
def __init__(self) -> None: | |
self.model_path = './models' | |
self.posttrained_path = './posttrained' | |
self.scaler_path = './pickles' | |
def cryptocurrency_prediction_utils(self, | |
days: int,sequence_length: int, model_name: str) -> list: | |
model_path = os.path.join(self.model_path, f'{model_name}.keras') | |
model = load_model(model_path) | |
dataframe_path = os.path.join(self.posttrained_path, f'{model_name}-posttrained.json') | |
dataframe = read_json(dataframe_path) | |
dataframe.set_index('Date', inplace = True) | |
minmax_scaler = load(os.path.join(self.scaler_path, f'{model_name}_minmax_scaler.pickle')) | |
standard_scaler = load(os.path.join(self.scaler_path, f'{model_name}_standard_scaler.pickle')) | |
lst_seq = dataframe[-sequence_length:].values | |
lst_seq = expand_dims(lst_seq, axis = 0) | |
predicted_prices = {} | |
last_date = to_datetime(dataframe.index[-1]) | |
for _ in range(days): | |
predicted_price = model.predict(lst_seq) | |
last_date = last_date + Timedelta(days = 1) | |
predicted_prices[last_date] = minmax_scaler.inverse_transform(predicted_price) | |
predicted_prices[last_date] = standard_scaler.inverse_transform(predicted_prices[last_date]) | |
lst_seq = append(lst_seq[:, 1:, :], [predicted_price], axis = 1) | |
values = [{'date': date.strftime('%Y-%m-%d'), 'price': float(price)} for date, price in predicted_prices.items()] | |
return values | |