Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,161 Bytes
ed5c8ca 0c49d71 ed5c8ca b883378 ed5c8ca 9cf1262 606515a ed5c8ca 9e7aadf 606515a ed5c8ca 0c49d71 606515a 0c49d71 ed5c8ca 606515a ed5c8ca 606515a 3765b23 606515a ed5c8ca 919da7e ca07f5f ed5c8ca 0f20da3 ed5c8ca 0f20da3 ed5c8ca 0f20da3 b883378 0f20da3 b883378 0c49d71 ed5c8ca 9cf1262 ed5c8ca 0c49d71 0f20da3 ed5c8ca e491d44 7487900 0f20da3 ed5c8ca 38f95d1 faa7adc ed5c8ca 7487900 ed5c8ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
import torch
import spaces
from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL, StableDiffusionXLPipeline
from transformers import AutoFeatureExtractor
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
import ipown
from huggingface_hub import hf_hub_download
from insightface.app import FaceAnalysis
from insightface.utils import face_align
import gradio as gr
import cv2
base_model_path = "SG161222/RealVisXL_V3.0"
ip_ckpt = hf_hub_download(repo_id="h94/IP-Adapter-FaceID", filename="ip-adapter-faceid_sdxl.bin", repo_type="model")
device = "cuda"
noise_scheduler = DDIMScheduler(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
steps_offset=1,
)
# vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch.float16)
pipe = StableDiffusionXLPipeline.from_pretrained(
base_model_path,
torch_dtype=torch.float16,
scheduler=noise_scheduler,
add_watermarker=False
# vae=vae,
#feature_extractor=safety_feature_extractor,
#safety_checker=safety_checker
)
#pipe.load_lora_weights("h94/IP-Adapter-FaceID", weight_name="ip-adapter-faceid-plusv2_sd15_lora.safetensors")
#pipe.fuse_lora()
ip_model = ipown.IPAdapterFaceIDXL(pipe, ip_ckpt, device)
@spaces.GPU(enable_queue=True)
def generate_image(images, prompt, negative_prompt, face_strength, likeness_strength, progress=gr.Progress(track_tqdm=True)):
# Clear GPU memory
torch.cuda.empty_cache()
# Start the process
pipe.to(device)
app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(640, 640))
faceid_all_embeds = []
for image in images:
face = cv2.imread(image)
faces = app.get(face)
faceid_embed = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
faceid_all_embeds.append(faceid_embed)
average_embedding = torch.mean(torch.stack(faceid_all_embeds, dim=0), dim=0)
total_negative_prompt = negative_prompt
print("Generating SDXL")
image = ip_model.generate(
prompt=prompt, negative_prompt=total_negative_prompt, faceid_embeds=average_embedding,
scale=likeness_strength, width=1024, height=1024, guidance_scale=face_strength, num_inference_steps=30
)
print(image)
return image
def swap_to_gallery(images):
return gr.update(value=images, visible=True), gr.update(visible=True), gr.update(visible=False)
def remove_back_to_files():
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
css = '''
h1{margin-bottom: 0 !important}
'''
with gr.Blocks(css=css) as demo:
gr.Markdown("# IP-Adapter-FaceID SDXL demo")
gr.Markdown("My own Demo for the [h94/IP-Adapter-FaceID SDXL model](https://huggingface.co/h94/IP-Adapter-FaceID).")
with gr.Row():
with gr.Column():
files = gr.Files(
label="Drag 1 or more photos of your face",
file_types=["image"]
)
uploaded_files = gr.Gallery(label="Your images", visible=False, columns=5, rows=1, height=125)
with gr.Column(visible=False) as clear_button:
remove_and_reupload = gr.ClearButton(value="Remove and upload new ones", components=files, size="sm")
prompt = gr.Textbox(label="Prompt",
info="Try something like 'a photo of a man/woman/person'",
placeholder="A photo of a [man/woman/person]...",
value="A photo of a man, professional photoshoot, plain black shirt, on plain black background, shaved head, trimmed beard, wrinkles on forehead, intense, stoic, dramatic lighting")
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="low quality", value="low quality, worst quality")
style = "Photorealistic"
submit = gr.Button("Submit")
with gr.Column(open=True):
face_strength = gr.Slider(label="Guidance Scale", info="Dunno what this actually is", value=7.5, step=0.1, minimum=1, maximum=10)
likeness_strength = gr.Slider(label="Scale", info="Dunno what this actually is, either", value=1.0, step=0.1, minimum=0, maximum=5)
with gr.Column():
gallery = gr.Gallery(label="Generated Images")
files.upload(fn=swap_to_gallery, inputs=files, outputs=[uploaded_files, clear_button, files])
remove_and_reupload.click(fn=remove_back_to_files, outputs=[uploaded_files, clear_button, files])
submit.click(fn=generate_image,
inputs=[files,prompt,negative_prompt, face_strength, likeness_strength],
outputs=gallery)
# gr.Markdown("This demo includes extra features to mitigate the implicit bias of the model and prevent explicit usage of it to generate content with faces of people, including third parties, that is not safe for all audiences, including naked or semi-naked people.")
demo.launch() |