File size: 5,161 Bytes
ed5c8ca
 
0c49d71
ed5c8ca
 
b883378
ed5c8ca
 
 
9cf1262
606515a
 
ed5c8ca
9e7aadf
606515a
 
 
 
 
 
 
 
 
 
 
ed5c8ca
0c49d71
606515a
 
 
0c49d71
ed5c8ca
 
 
606515a
 
ed5c8ca
 
606515a
3765b23
606515a
ed5c8ca
919da7e
ca07f5f
 
 
 
 
ed5c8ca
 
 
 
 
 
 
 
 
 
0f20da3
ed5c8ca
 
0f20da3
ed5c8ca
0f20da3
b883378
 
0f20da3
b883378
0c49d71
ed5c8ca
 
 
 
 
9cf1262
ed5c8ca
 
 
 
 
 
0c49d71
0f20da3
ed5c8ca
 
 
 
 
 
 
 
 
 
e491d44
 
 
7487900
0f20da3
ed5c8ca
38f95d1
faa7adc
 
ed5c8ca
 
 
 
 
7487900
ed5c8ca
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import torch
import spaces
from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL, StableDiffusionXLPipeline
from transformers import AutoFeatureExtractor
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
import ipown
from huggingface_hub import hf_hub_download
from insightface.app import FaceAnalysis
from insightface.utils import face_align
import gradio as gr
import cv2

base_model_path = "SG161222/RealVisXL_V3.0"
ip_ckpt = hf_hub_download(repo_id="h94/IP-Adapter-FaceID", filename="ip-adapter-faceid_sdxl.bin", repo_type="model")
device = "cuda"

noise_scheduler = DDIMScheduler(
    num_train_timesteps=1000,
    beta_start=0.00085,
    beta_end=0.012,
    beta_schedule="scaled_linear",
    clip_sample=False,
    set_alpha_to_one=False,
    steps_offset=1,
)
# vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch.float16)
pipe = StableDiffusionXLPipeline.from_pretrained(
    base_model_path,
    torch_dtype=torch.float16,
    scheduler=noise_scheduler,
    add_watermarker=False
    # vae=vae,
    #feature_extractor=safety_feature_extractor,
    #safety_checker=safety_checker
)

#pipe.load_lora_weights("h94/IP-Adapter-FaceID", weight_name="ip-adapter-faceid-plusv2_sd15_lora.safetensors")
#pipe.fuse_lora()

ip_model = ipown.IPAdapterFaceIDXL(pipe, ip_ckpt, device)

@spaces.GPU(enable_queue=True)
def generate_image(images, prompt, negative_prompt, face_strength, likeness_strength, progress=gr.Progress(track_tqdm=True)):
    
    # Clear GPU memory
    torch.cuda.empty_cache()
    
    # Start the process
    pipe.to(device)
    app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
    app.prepare(ctx_id=0, det_size=(640, 640))
    
    faceid_all_embeds = []
    for image in images:
        face = cv2.imread(image)
        faces = app.get(face)
        faceid_embed = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
        faceid_all_embeds.append(faceid_embed)

    average_embedding = torch.mean(torch.stack(faceid_all_embeds, dim=0), dim=0)
    
    total_negative_prompt = negative_prompt
    
    print("Generating SDXL")
    image = ip_model.generate(
        prompt=prompt, negative_prompt=total_negative_prompt, faceid_embeds=average_embedding,
        scale=likeness_strength, width=1024, height=1024, guidance_scale=face_strength, num_inference_steps=30
    )

    print(image)
    return image

def swap_to_gallery(images):
    return gr.update(value=images, visible=True), gr.update(visible=True), gr.update(visible=False)

def remove_back_to_files():
    return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
css = '''
h1{margin-bottom: 0 !important}
'''
with gr.Blocks(css=css) as demo:
    gr.Markdown("# IP-Adapter-FaceID SDXL demo")
    gr.Markdown("My own Demo for the [h94/IP-Adapter-FaceID SDXL model](https://huggingface.co/h94/IP-Adapter-FaceID).")
    with gr.Row():
        with gr.Column():
            files = gr.Files(
                        label="Drag 1 or more photos of your face",
                        file_types=["image"]
                    )
            uploaded_files = gr.Gallery(label="Your images", visible=False, columns=5, rows=1, height=125)
            with gr.Column(visible=False) as clear_button:
                remove_and_reupload = gr.ClearButton(value="Remove and upload new ones", components=files, size="sm")
            prompt = gr.Textbox(label="Prompt",
                        info="Try something like 'a photo of a man/woman/person'",
                        placeholder="A photo of a [man/woman/person]...",
                        value="A photo of a man, professional photoshoot, plain black shirt, on plain black background, shaved head, trimmed beard, wrinkles on forehead, intense, stoic, dramatic lighting")
            negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="low quality", value="low quality, worst quality")
            style = "Photorealistic"
            submit = gr.Button("Submit")
            with gr.Column(open=True):
                face_strength = gr.Slider(label="Guidance Scale", info="Dunno what this actually is", value=7.5, step=0.1, minimum=1, maximum=10)
                likeness_strength = gr.Slider(label="Scale", info="Dunno what this actually is, either", value=1.0, step=0.1, minimum=0, maximum=5)
        with gr.Column():
            gallery = gr.Gallery(label="Generated Images")
        files.upload(fn=swap_to_gallery, inputs=files, outputs=[uploaded_files, clear_button, files])
        remove_and_reupload.click(fn=remove_back_to_files, outputs=[uploaded_files, clear_button, files])
        submit.click(fn=generate_image,
                    inputs=[files,prompt,negative_prompt, face_strength, likeness_strength],
                    outputs=gallery)
    
    # gr.Markdown("This demo includes extra features to mitigate the implicit bias of the model and prevent explicit usage of it to generate content with faces of people, including third parties, that is not safe for all audiences, including naked or semi-naked people.")
    
demo.launch()