File size: 5,166 Bytes
ed5c8ca
 
0c49d71
ed5c8ca
 
b883378
ed5c8ca
 
 
9cf1262
606515a
 
ed5c8ca
9e7aadf
606515a
 
 
 
 
 
 
 
 
 
 
ed5c8ca
0c49d71
606515a
 
 
0c49d71
ed5c8ca
 
 
606515a
 
3765b23
606515a
ed5c8ca
919da7e
ca07f5f
 
 
 
 
ed5c8ca
 
f233c1b
ed5c8ca
 
 
 
 
 
 
0f20da3
ed5c8ca
 
0f20da3
ed5c8ca
0f20da3
b883378
 
0f20da3
b883378
0c49d71
ed5c8ca
 
 
 
 
9cf1262
ed5c8ca
 
 
 
 
 
0c49d71
e019702
ed5c8ca
 
 
 
 
 
beab703
ed5c8ca
4c6b687
ed5c8ca
e491d44
 
f233c1b
7487900
0f20da3
4c6b687
 
beab703
ed5c8ca
 
 
 
 
7487900
ed5c8ca
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import torch
import spaces
from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL, StableDiffusionXLPipeline
from transformers import AutoFeatureExtractor
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
import ipown
from huggingface_hub import hf_hub_download
from insightface.app import FaceAnalysis
from insightface.utils import face_align
import gradio as gr
import cv2

base_model_path = "SG161222/RealVisXL_V3.0"
ip_ckpt = hf_hub_download(repo_id="h94/IP-Adapter-FaceID", filename="ip-adapter-faceid_sdxl.bin", repo_type="model")
device = "cuda"

noise_scheduler = DDIMScheduler(
    num_train_timesteps=1000,
    beta_start=0.00085,
    beta_end=0.012,
    beta_schedule="scaled_linear",
    clip_sample=False,
    set_alpha_to_one=False,
    steps_offset=1,
)
# vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch.float16)
pipe = StableDiffusionXLPipeline.from_pretrained(
    base_model_path,
    torch_dtype=torch.float16,
    scheduler=noise_scheduler,
    add_watermarker=False
    # vae=vae,
    #feature_extractor=safety_feature_extractor,
    #safety_checker=safety_checker
)

ip_model = ipown.IPAdapterFaceIDXL(pipe, ip_ckpt, device)

@spaces.GPU(enable_queue=True)
def generate_image(images, prompt, negative_prompt, face_strength, likeness_strength, progress=gr.Progress(track_tqdm=True)):
    
    # Clear GPU memory
    torch.cuda.empty_cache()
    
    # Start the process
    pipe.to(device)
    app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
    app.prepare(ctx_id=0, det_size=(512, 512))
    
    faceid_all_embeds = []
    for image in images:
        face = cv2.imread(image)
        faces = app.get(face)
        faceid_embed = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
        faceid_all_embeds.append(faceid_embed)

    average_embedding = torch.mean(torch.stack(faceid_all_embeds, dim=0), dim=0)
    
    total_negative_prompt = negative_prompt
    
    print("Generating SDXL")
    image = ip_model.generate(
        prompt=prompt, negative_prompt=total_negative_prompt, faceid_embeds=average_embedding,
        scale=likeness_strength, width=1024, height=1024, guidance_scale=face_strength, num_inference_steps=30
    )

    print(image)
    return image

def swap_to_gallery(images):
    return gr.update(value=images, visible=True), gr.update(visible=True), gr.update(visible=False)

def remove_back_to_files():
    return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
css = '''
h1{margin-bottom: 0 !important}
'''
with gr.Blocks(css=css) as demo:
    gr.Markdown("# IP-Adapter-FaceID SDXL demo")
    gr.Markdown("My own Demo for the [h94/IP-Adapter-FaceID SDXL model](https://huggingface.co/h94/IP-Adapter-FaceID). I have no idea what I am doing, but you should run this on at least 24 GB of VRAM")
    with gr.Row():
        with gr.Column():
            files = gr.Files(
                        label="Drag 1 or more photos of your face",
                        file_types=["image"]
                    )
            uploaded_files = gr.Gallery(label="Your images", visible=False, columns=5, rows=1, height=250)
            with gr.Column(visible=False) as clear_button:
                remove_and_reupload = gr.ClearButton(value="Remove files and upload new ones", components=files, size="sm")
            prompt = gr.Textbox(label="Prompt",
                        info="Try something like 'a photo of a man/woman/person'",
                        placeholder="A photo of a [man/woman/person]...",
                        value="A photo of a man, looking directly at camera, professional photoshoot, plain black shirt, on plain black background, shaved head, trimmed beard, stoic, dynamic lighting")
            negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="low quality", value="low quality, worst quality")
            style = "Photorealistic"
            face_strength = gr.Slider(label="Guidance Scale", info="How much importance is given to the prompt when generating images.", value=7.5, step=0.1, minimum=0, maximum=15)
            likeness_strength = gr.Slider(label="Scale", info="How much importance is given to your uploaded files when generating images.", value=1.0, step=0.1, minimum=0, maximum=5)
            submit = gr.Button("Submit", variant="primary")
        with gr.Column():
            gallery = gr.Gallery(label="Generated Images")
        files.upload(fn=swap_to_gallery, inputs=files, outputs=[uploaded_files, clear_button, files])
        remove_and_reupload.click(fn=remove_back_to_files, outputs=[uploaded_files, clear_button, files])
        submit.click(fn=generate_image,
                    inputs=[files,prompt,negative_prompt, face_strength, likeness_strength],
                    outputs=gallery)
    
    # gr.Markdown("This demo includes extra features to mitigate the implicit bias of the model and prevent explicit usage of it to generate content with faces of people, including third parties, that is not safe for all audiences, including naked or semi-naked people.")
    
demo.launch()