Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,166 Bytes
ed5c8ca 0c49d71 ed5c8ca b883378 ed5c8ca 9cf1262 606515a ed5c8ca 9e7aadf 606515a ed5c8ca 0c49d71 606515a 0c49d71 ed5c8ca 606515a 3765b23 606515a ed5c8ca 919da7e ca07f5f ed5c8ca f233c1b ed5c8ca 0f20da3 ed5c8ca 0f20da3 ed5c8ca 0f20da3 b883378 0f20da3 b883378 0c49d71 ed5c8ca 9cf1262 ed5c8ca 0c49d71 e019702 ed5c8ca beab703 ed5c8ca 4c6b687 ed5c8ca e491d44 f233c1b 7487900 0f20da3 4c6b687 beab703 ed5c8ca 7487900 ed5c8ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
import torch
import spaces
from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL, StableDiffusionXLPipeline
from transformers import AutoFeatureExtractor
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
import ipown
from huggingface_hub import hf_hub_download
from insightface.app import FaceAnalysis
from insightface.utils import face_align
import gradio as gr
import cv2
base_model_path = "SG161222/RealVisXL_V3.0"
ip_ckpt = hf_hub_download(repo_id="h94/IP-Adapter-FaceID", filename="ip-adapter-faceid_sdxl.bin", repo_type="model")
device = "cuda"
noise_scheduler = DDIMScheduler(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
steps_offset=1,
)
# vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch.float16)
pipe = StableDiffusionXLPipeline.from_pretrained(
base_model_path,
torch_dtype=torch.float16,
scheduler=noise_scheduler,
add_watermarker=False
# vae=vae,
#feature_extractor=safety_feature_extractor,
#safety_checker=safety_checker
)
ip_model = ipown.IPAdapterFaceIDXL(pipe, ip_ckpt, device)
@spaces.GPU(enable_queue=True)
def generate_image(images, prompt, negative_prompt, face_strength, likeness_strength, progress=gr.Progress(track_tqdm=True)):
# Clear GPU memory
torch.cuda.empty_cache()
# Start the process
pipe.to(device)
app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(512, 512))
faceid_all_embeds = []
for image in images:
face = cv2.imread(image)
faces = app.get(face)
faceid_embed = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
faceid_all_embeds.append(faceid_embed)
average_embedding = torch.mean(torch.stack(faceid_all_embeds, dim=0), dim=0)
total_negative_prompt = negative_prompt
print("Generating SDXL")
image = ip_model.generate(
prompt=prompt, negative_prompt=total_negative_prompt, faceid_embeds=average_embedding,
scale=likeness_strength, width=1024, height=1024, guidance_scale=face_strength, num_inference_steps=30
)
print(image)
return image
def swap_to_gallery(images):
return gr.update(value=images, visible=True), gr.update(visible=True), gr.update(visible=False)
def remove_back_to_files():
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
css = '''
h1{margin-bottom: 0 !important}
'''
with gr.Blocks(css=css) as demo:
gr.Markdown("# IP-Adapter-FaceID SDXL demo")
gr.Markdown("My own Demo for the [h94/IP-Adapter-FaceID SDXL model](https://huggingface.co/h94/IP-Adapter-FaceID). I have no idea what I am doing, but you should run this on at least 24 GB of VRAM")
with gr.Row():
with gr.Column():
files = gr.Files(
label="Drag 1 or more photos of your face",
file_types=["image"]
)
uploaded_files = gr.Gallery(label="Your images", visible=False, columns=5, rows=1, height=250)
with gr.Column(visible=False) as clear_button:
remove_and_reupload = gr.ClearButton(value="Remove files and upload new ones", components=files, size="sm")
prompt = gr.Textbox(label="Prompt",
info="Try something like 'a photo of a man/woman/person'",
placeholder="A photo of a [man/woman/person]...",
value="A photo of a man, looking directly at camera, professional photoshoot, plain black shirt, on plain black background, shaved head, trimmed beard, stoic, dynamic lighting")
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="low quality", value="low quality, worst quality")
style = "Photorealistic"
face_strength = gr.Slider(label="Guidance Scale", info="How much importance is given to the prompt when generating images.", value=7.5, step=0.1, minimum=0, maximum=15)
likeness_strength = gr.Slider(label="Scale", info="How much importance is given to your uploaded files when generating images.", value=1.0, step=0.1, minimum=0, maximum=5)
submit = gr.Button("Submit", variant="primary")
with gr.Column():
gallery = gr.Gallery(label="Generated Images")
files.upload(fn=swap_to_gallery, inputs=files, outputs=[uploaded_files, clear_button, files])
remove_and_reupload.click(fn=remove_back_to_files, outputs=[uploaded_files, clear_button, files])
submit.click(fn=generate_image,
inputs=[files,prompt,negative_prompt, face_strength, likeness_strength],
outputs=gallery)
# gr.Markdown("This demo includes extra features to mitigate the implicit bias of the model and prevent explicit usage of it to generate content with faces of people, including third parties, that is not safe for all audiences, including naked or semi-naked people.")
demo.launch() |