import torch import spaces from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL, StableDiffusionXLPipeline from transformers import AutoFeatureExtractor from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker import ipown from huggingface_hub import hf_hub_download from insightface.app import FaceAnalysis from insightface.utils import face_align import gradio as gr import cv2 base_model_path = "SG161222/RealVisXL_V3.0" ip_ckpt = hf_hub_download(repo_id="h94/IP-Adapter-FaceID", filename="ip-adapter-faceid_sdxl.bin", repo_type="model") device = "cuda" noise_scheduler = DDIMScheduler( num_train_timesteps=1000, beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False, steps_offset=1, ) # vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch.float16) pipe = StableDiffusionXLPipeline.from_pretrained( base_model_path, torch_dtype=torch.float16, scheduler=noise_scheduler, add_watermarker=False # vae=vae, #feature_extractor=safety_feature_extractor, #safety_checker=safety_checker ) ip_model = ipown.IPAdapterFaceIDXL(pipe, ip_ckpt, device) @spaces.GPU(enable_queue=True) def generate_image(images, prompt, negative_prompt, face_strength, likeness_strength, progress=gr.Progress(track_tqdm=True)): # Clear GPU memory torch.cuda.empty_cache() # Start the process pipe.to(device) app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider']) app.prepare(ctx_id=0, det_size=(512, 512)) faceid_all_embeds = [] for image in images: face = cv2.imread(image) faces = app.get(face) faceid_embed = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0) faceid_all_embeds.append(faceid_embed) average_embedding = torch.mean(torch.stack(faceid_all_embeds, dim=0), dim=0) total_negative_prompt = negative_prompt print("Generating SDXL") image = ip_model.generate( prompt=prompt, negative_prompt=total_negative_prompt, faceid_embeds=average_embedding, scale=likeness_strength, width=1024, height=1024, guidance_scale=face_strength, num_inference_steps=30 ) print(image) return image def swap_to_gallery(images): return gr.update(value=images, visible=True), gr.update(visible=True), gr.update(visible=False) def remove_back_to_files(): return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True) css = ''' h1{margin-bottom: 0 !important} ''' with gr.Blocks(css=css) as demo: gr.Markdown("# IP-Adapter-FaceID SDXL demo") gr.Markdown("My own Demo for the [h94/IP-Adapter-FaceID SDXL model](https://huggingface.co/h94/IP-Adapter-FaceID). I have no idea what I am doing, but you should run this on at least 24 GB of VRAM") with gr.Row(): with gr.Column(): files = gr.Files( label="Drag 1 or more photos of your face", file_types=["image"] ) uploaded_files = gr.Gallery(label="Your images", visible=False, columns=5, rows=1, height=250) with gr.Column(visible=False) as clear_button: remove_and_reupload = gr.ClearButton(value="Remove files and upload new ones", components=files, size="sm") prompt = gr.Textbox(label="Prompt", info="Try something like 'a photo of a man/woman/person'", placeholder="A photo of a [man/woman/person]...", value="A photo of a man, looking directly at camera, professional photoshoot, plain black shirt, on plain black background, shaved head, trimmed beard, stoic, dynamic lighting") negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="low quality", value="low quality, worst quality") style = "Photorealistic" face_strength = gr.Slider(label="Guidance Scale", info="How much importance is given to the prompt when generating images.", value=7.5, step=0.1, minimum=0, maximum=15) likeness_strength = gr.Slider(label="Scale", info="How much importance is given to your uploaded files when generating images.", value=1.0, step=0.1, minimum=0, maximum=5) submit = gr.Button("Submit", variant="primary") with gr.Column(): gallery = gr.Gallery(label="Generated Images") files.upload(fn=swap_to_gallery, inputs=files, outputs=[uploaded_files, clear_button, files]) remove_and_reupload.click(fn=remove_back_to_files, outputs=[uploaded_files, clear_button, files]) submit.click(fn=generate_image, inputs=[files,prompt,negative_prompt, face_strength, likeness_strength], outputs=gallery) # gr.Markdown("This demo includes extra features to mitigate the implicit bias of the model and prevent explicit usage of it to generate content with faces of people, including third parties, that is not safe for all audiences, including naked or semi-naked people.") demo.launch()