Spaces:
Runtime error
Runtime error
Rens Dimmendaal
commited on
Commit
•
c5d7102
1
Parent(s):
7ff6a1c
init
Browse files- app.py +91 -0
- imgofai/__init__.py +8 -0
- imgofai/tree.py +101 -0
- requirements.txt +7 -0
app.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from imgofai import *
|
2 |
+
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
|
5 |
+
import PIL
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
from pathlib import Path
|
9 |
+
|
10 |
+
from imgofai.tree import img2df, df2xy
|
11 |
+
import pandas as pd
|
12 |
+
from sklearn.tree import DecisionTreeRegressor
|
13 |
+
from sklearn.preprocessing import FunctionTransformer
|
14 |
+
from sklearn.pipeline import make_pipeline
|
15 |
+
|
16 |
+
import streamlit as st
|
17 |
+
|
18 |
+
import requests
|
19 |
+
|
20 |
+
st.write("# Images of AI Demo")
|
21 |
+
|
22 |
+
st.write("This page demonstrates how I created the images I submitted for [Better Images of AI project](https://betterimagesofai.org/images)")
|
23 |
+
|
24 |
+
def add_radial_features(X,y=None):
|
25 |
+
assert isinstance(X, pd.DataFrame), "X is not a dataframe"
|
26 |
+
xp = X.copy()
|
27 |
+
xp['dim0'] = np.sqrt(((X - X.mean())**2).sum(axis=1))
|
28 |
+
xp['dim1'] = np.arctan2(X['dim1'],X['dim0'])
|
29 |
+
|
30 |
+
X = pd.concat([
|
31 |
+
X,
|
32 |
+
xp,
|
33 |
+
],axis=1)
|
34 |
+
|
35 |
+
return X
|
36 |
+
|
37 |
+
|
38 |
+
|
39 |
+
def make_tree_approximator(radial = False, max_depth=4):
|
40 |
+
if radial:
|
41 |
+
model = make_pipeline(
|
42 |
+
FunctionTransformer(add_radial_features),
|
43 |
+
DecisionTreeRegressor(max_depth=max_depth),
|
44 |
+
)
|
45 |
+
else:
|
46 |
+
model = DecisionTreeRegressor(max_depth=max_depth)
|
47 |
+
|
48 |
+
|
49 |
+
model.fit(x_raw, y)
|
50 |
+
pred = PIL.Image.fromarray(
|
51 |
+
model.predict(x_raw).reshape(img_array.shape).round().astype("uint8")
|
52 |
+
)
|
53 |
+
score = model.score(x_raw, y)
|
54 |
+
return pred
|
55 |
+
|
56 |
+
|
57 |
+
st.write("## Try it out yourself:")
|
58 |
+
|
59 |
+
url = st.text_input("Image url:", "https://images.unsplash.com/reserve/bOvf94dPRxWu0u3QsPjF_tree.jpg?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=1752&q=80")
|
60 |
+
img = PIL.Image.open(requests.get(url, stream=True).raw)
|
61 |
+
|
62 |
+
img_array = np.array(img)
|
63 |
+
df = img2df(img_array)
|
64 |
+
x_raw, y = df2xy(df)
|
65 |
+
|
66 |
+
|
67 |
+
|
68 |
+
ccol1, ccol2, _ = st.columns(3)
|
69 |
+
|
70 |
+
with ccol1:
|
71 |
+
max_depth1 = st.slider("max depth left:",1,12,2)
|
72 |
+
radial1 = st.checkbox("radial features left", value=False)
|
73 |
+
|
74 |
+
with ccol2:
|
75 |
+
max_depth2 = st.slider("max depth middle:",1,12,6)
|
76 |
+
radial2 = st.checkbox("radial features middle", value=False)
|
77 |
+
|
78 |
+
|
79 |
+
st.write("## Output")
|
80 |
+
col1, col2, col3 = st.columns(3)
|
81 |
+
|
82 |
+
with col1:
|
83 |
+
left_img = make_tree_approximator(radial1, max_depth=max_depth1)
|
84 |
+
st.image(left_img)
|
85 |
+
|
86 |
+
with col2:
|
87 |
+
mid_img = make_tree_approximator(radial2, max_depth=max_depth2)
|
88 |
+
st.image(mid_img)
|
89 |
+
|
90 |
+
with col3:
|
91 |
+
st.image(img)
|
imgofai/__init__.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datetime
|
2 |
+
from .tree import treeify
|
3 |
+
|
4 |
+
__version__ = "0.1.0"
|
5 |
+
|
6 |
+
|
7 |
+
def timestamp():
|
8 |
+
return datetime.datetime.now().strftime("%Y%m%d%H%M%S")
|
imgofai/tree.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import matplotlib.pyplot as plt
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
from sklearn.tree import DecisionTreeRegressor
|
5 |
+
import PIL
|
6 |
+
|
7 |
+
|
8 |
+
def img2df(img_array):
|
9 |
+
dim0_arr = (
|
10 |
+
np.arange(img_array.shape[0])
|
11 |
+
.reshape((-1, 1))
|
12 |
+
.repeat(img_array.shape[1], axis=1)
|
13 |
+
.flatten()
|
14 |
+
)
|
15 |
+
|
16 |
+
dim1_arr = (
|
17 |
+
np.arange(img_array.shape[1])
|
18 |
+
.reshape((1, -1))
|
19 |
+
.repeat(img_array.shape[0], axis=0)
|
20 |
+
.flatten()
|
21 |
+
)
|
22 |
+
|
23 |
+
df = pd.DataFrame({"dim0": dim0_arr, "dim1": dim1_arr})
|
24 |
+
|
25 |
+
values = img_array.reshape((img_array.shape[0] * img_array.shape[1], -1))
|
26 |
+
for col in range(values.shape[1]):
|
27 |
+
df[f"value{col}"] = values[:, col]
|
28 |
+
|
29 |
+
return df
|
30 |
+
|
31 |
+
|
32 |
+
def normalize(img):
|
33 |
+
return (img - img.min()) / (img.max() - img.min())
|
34 |
+
|
35 |
+
|
36 |
+
def df2xy(df):
|
37 |
+
x = df[[c for c in df if c.startswith("dim")]]
|
38 |
+
y = df[[c for c in df if c.startswith("value")]]
|
39 |
+
|
40 |
+
if len(y.columns) == 1:
|
41 |
+
y = y.values.reshape(-1)
|
42 |
+
return x, y
|
43 |
+
|
44 |
+
|
45 |
+
def tree_window(
|
46 |
+
img, add_cartesian=True, add_rotation=False, add_polar=False, depths=(2, 6)
|
47 |
+
):
|
48 |
+
df = img2df(img)
|
49 |
+
x_raw, y = df2xy(df)
|
50 |
+
|
51 |
+
sets = []
|
52 |
+
if add_cartesian:
|
53 |
+
sets.append(x_raw)
|
54 |
+
if add_rotation > 0:
|
55 |
+
# rotate
|
56 |
+
theta = np.radians(add_rotation)
|
57 |
+
c, s = np.cos(theta), np.sin(theta)
|
58 |
+
R = np.array(((c, -s), (s, c)))
|
59 |
+
xr = x_raw @ R
|
60 |
+
sets.append(xr)
|
61 |
+
if add_polar:
|
62 |
+
# polar
|
63 |
+
xp = x_raw.copy()
|
64 |
+
xp["dim0"] = np.sqrt(((x_raw - x_raw.mean()) ** 2).sum(axis=1))
|
65 |
+
xp["dim1"] = np.arctan2(x_raw["dim1"], x_raw["dim0"])
|
66 |
+
sets.append(xp)
|
67 |
+
|
68 |
+
x = pd.concat(sets, axis=1)
|
69 |
+
|
70 |
+
fig, axes = plt.subplots(ncols=len(depths) + 1, figsize=(36, 36))
|
71 |
+
|
72 |
+
for ax, depth in zip(axes, depths):
|
73 |
+
model = DecisionTreeRegressor(max_depth=depth)
|
74 |
+
model.fit(x, y)
|
75 |
+
pred = model.predict(x).reshape(img.shape)
|
76 |
+
if len(y.shape) == 2:
|
77 |
+
ax.imshow(pred)
|
78 |
+
else:
|
79 |
+
ax.imshow(pred, cmap="gray")
|
80 |
+
ax.set_axis_off()
|
81 |
+
|
82 |
+
if len(y.shape) == 2:
|
83 |
+
axes[-1].imshow(img)
|
84 |
+
else:
|
85 |
+
axes[-1].imshow(img, cmap="gray")
|
86 |
+
axes[-1].set_axis_off()
|
87 |
+
|
88 |
+
return fig
|
89 |
+
|
90 |
+
|
91 |
+
def treeify(img, max_depth):
|
92 |
+
img_array = np.array(img)
|
93 |
+
df = img2df(img_array)
|
94 |
+
x, y = df2xy(df)
|
95 |
+
model = DecisionTreeRegressor(max_depth=max_depth)
|
96 |
+
model.fit(x, y)
|
97 |
+
pred = PIL.Image.fromarray(
|
98 |
+
model.predict(x).reshape(img_array.shape).round().astype("uint8")
|
99 |
+
)
|
100 |
+
score = model.score(x, y)
|
101 |
+
return pred, score
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
matplotlib
|
2 |
+
Pillow
|
3 |
+
numpy
|
4 |
+
pandas
|
5 |
+
scikit-learn
|
6 |
+
streamlit
|
7 |
+
requests
|