File size: 4,760 Bytes
a9c396e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import gradio as gr
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter
from langchain.vectorstores import DocArrayInMemorySearch
from langchain.chains import RetrievalQA,  ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
from langchain.chat_models import ChatOpenAI
from langchain.embeddings import HuggingFaceEmbeddings
from langchain import HuggingFaceHub
from langchain.llms import LlamaCpp
from huggingface_hub import hf_hub_download
from langchain.document_loaders import (
    EverNoteLoader,
    TextLoader,
    UnstructuredEPubLoader,
    UnstructuredHTMLLoader,
    UnstructuredMarkdownLoader,
    UnstructuredODTLoader,
    UnstructuredPowerPointLoader,
    UnstructuredWordDocumentLoader,
    PyPDFLoader,
)
import param
import os
import torch
from conversadocs.bones import DocChat

dc = DocChat()

##### GRADIO CONFIG ####

if torch.cuda.is_available():
    print("CUDA is available on this system.")
    os.system('CMAKE_ARGS="-DLLAMA_CUBLAS=on" FORCE_CMAKE=1 pip install llama-cpp-python --force-reinstall --upgrade --no-cache-dir --verbose')
else:
    print("CUDA is not available on this system.")
    os.system('pip install llama-cpp-python')

css="""
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
"""

title = """
<div style="text-align: center;max-width: 700px;">
    <h1>Chat with Documents 📚 - Falcon, Llama-2</h1>
    <p style="text-align: center;">Upload txt, pdf, doc, docx, enex, epub, html, md, odt, ptt, pttx; click the "Click to Upload Files" button, <br />
    Wait for the Status to show Loaded documents, start typing your questions. <br />
    The app is set to store chat-history</p>
</div>
"""

theme='aliabid94/new-theme'

def flag():
  return "PROCESSING..."

def upload_file(files, max_docs):
    file_paths = [file.name for file in files]
    return dc.call_load_db(file_paths, max_docs)

def predict(message, chat_history, max_k):
        print(message)
        bot_message = dc.convchain(message, max_k)
        print(bot_message)
        return "", dc.get_chats()

def convert():
  docs = dc.get_sources()
  data_docs = ""
  for i in range(0,len(docs),2):
    txt = docs[i][1].replace("\n","<br>")
    sc = "Archive: " + docs[i+1][1]["source"]
    try:
      pg = "Page: " + str(docs[i+1][1]["page"])
    except:
      pg = "Document Data"
    data_docs += f"<hr><h3 style='color:red;'>{pg}</h2><p>{txt}</p><p>{sc}</p>"
  return data_docs



with gr.Blocks(theme=theme, css=css) as demo:
  with gr.Tab("Chat"):

    with gr.Column(elem_id="col-container"):
        gr.HTML(title)
        upload_button = gr.UploadButton("Click to Upload Files", file_types=["pdf"], file_count="multiple")
        file_output = gr.HTML()
        chatbot = gr.Chatbot([], elem_id="chatbot").style(height=300)
        msg = gr.Textbox(label="Question", placeholder="Type your question and hit Enter ")

    with gr.Column():
        sou = gr.HTML("")

  with gr.Tab("Chat Options"):
    max_docs = gr.inputs.Slider(1, 10, default=3, label="Maximum querys to the DB.", step=1)
    row_table = gr.HTML("<hr><h4> </h2>")
    clear_button = gr.Button("CLEAR CHAT HISTORY", )
    link_output = gr.HTML("")
    clear_button.click(flag,[],[link_output]).then(dc.clr_history,[], [link_output]).then(lambda: None, None, chatbot, queue=False)

    upload_button.upload(flag,[],[file_output]).then(upload_file, [upload_button, max_docs], file_output)

  with gr.Tab("Change model"):
    gr.HTML("<h3>Only models from the GGML library are accepted.</h3>")
    repo_ = gr.Textbox(label="Repository" ,value="TheBloke/Llama-2-7B-Chat-GGML")
    file_ = gr.Textbox(label="File name" ,value="llama-2-7b-chat.ggmlv3.q2_K.bin")
    max_tokens = gr.inputs.Slider(1, 2048, default=16, label="Max new tokens", step=1)
    temperature = gr.inputs.Slider(0.1, 1., default=0.2, label="Temperature", step=0.1)
    top_k = gr.inputs.Slider(0.01, 1., default=0.95, label="Top K", step=0.01)
    top_p = gr.inputs.Slider(0, 100, default=50, label="Top P", step=1)
    repeat_penalty = gr.inputs.Slider(0.1, 100., default=1.2, label="Repeat penalty", step=0.1)
    change_model_button = gr.Button("Load Model")
    model_verify = gr.HTML("Loaded model Falcon 7B-instruct")
    default_model = gr.HTML("<hr><h4>Default Model</h2>")
    falcon_button = gr.Button("FALCON 7B-Instruct")

  msg.submit(predict,[msg, chatbot, max_docs],[msg, chatbot]).then(convert,[],[sou])

  change_model_button.click(dc.change_llm,[repo_, file_, max_tokens, temperature, top_p, top_k, repeat_penalty, max_docs],[model_verify])
  falcon_button.click(dc.default_falcon_model, [], [model_verify])

demo.launch(enable_queue=True)