import gradio as gr from langchain.embeddings.openai import OpenAIEmbeddings from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter from langchain.vectorstores import DocArrayInMemorySearch from langchain.chains import RetrievalQA, ConversationalRetrievalChain from langchain.memory import ConversationBufferMemory from langchain.chat_models import ChatOpenAI from langchain.embeddings import HuggingFaceEmbeddings from langchain import HuggingFaceHub from langchain.llms import LlamaCpp from huggingface_hub import hf_hub_download from langchain.document_loaders import ( EverNoteLoader, TextLoader, UnstructuredEPubLoader, UnstructuredHTMLLoader, UnstructuredMarkdownLoader, UnstructuredODTLoader, UnstructuredPowerPointLoader, UnstructuredWordDocumentLoader, PyPDFLoader, ) import param import os import torch from conversadocs.bones import DocChat dc = DocChat() ##### GRADIO CONFIG #### if torch.cuda.is_available(): print("CUDA is available on this system.") os.system('CMAKE_ARGS="-DLLAMA_CUBLAS=on" FORCE_CMAKE=1 pip install llama-cpp-python --force-reinstall --upgrade --no-cache-dir --verbose') else: print("CUDA is not available on this system.") os.system('pip install llama-cpp-python') css=""" #col-container {max-width: 1500px; margin-left: auto; margin-right: auto;} """ title = """

Chat with Documents 📚 - Falcon and Llama-2

Upload txt, pdf, doc, docx, enex, epub, html, md, odt, ptt and pttx. Wait for the Status to show Loaded documents, start typing your questions. This is a demo of ConversaDocs.

""" description = """ # Application Information - Notebook for run ConversaDocs in Colab [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/R3gm/ConversaDocs/blob/main/ConversaDocs_Colab.ipynb) - Oficial Repository [![a](https://img.shields.io/badge/GitHub-Repository-black?style=flat-square&logo=github)](https://github.com/R3gm/ConversaDocs/) - This application works on both CPU and GPU. For fast inference with GGML models, use the GPU. - You can clone the 'space' but to make it work, you need to set My_hf_token in secrets with a valid huggingface [token](https://huggingface.co/settings/tokens) - For more information about what GGML models are, you can visit this notebook [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/R3gm/InsightSolver-Colab/blob/main/LLM_Inference_with_llama_cpp_python__Llama_2_13b_chat.ipynb) """ theme='aliabid94/new-theme' def flag(): return "PROCESSING..." def upload_file(files, max_docs): file_paths = [file.name for file in files] return dc.call_load_db(file_paths, max_docs) def predict(message, chat_history, max_k, check_memory): print(message) print(check_memory) bot_message = dc.convchain(message, max_k, check_memory) print(bot_message) return "", dc.get_chats() def convert(): docs = dc.get_sources() data_docs = "" for i in range(0,len(docs),2): txt = docs[i][1].replace("\n","
") sc = "Archive: " + docs[i+1][1]["source"] try: pg = "Page: " + str(docs[i+1][1]["page"]) except: pg = "Document Data" data_docs += f"

{pg}

{txt}

{sc}

" return data_docs def clear_api_key(api_key): return 'api_key...', dc.openai_model(api_key) # Max values in generation DOC_DB_LIMIT = 10 MAX_NEW_TOKENS = 2048 # Limit in HF, no need to set it if "SET_LIMIT" == os.getenv("DEMO"): DOC_DB_LIMIT = 4 MAX_NEW_TOKENS = 32 with gr.Blocks(theme=theme, css=css) as demo: with gr.Tab("Chat"): with gr.Column(): gr.HTML(title) upload_button = gr.UploadButton("Click to Upload Files", file_count="multiple") file_output = gr.HTML() chatbot = gr.Chatbot([], elem_id="chatbot") #.style(height=300) msg = gr.Textbox(label="Question", placeholder="Type your question and hit Enter ") with gr.Row(): check_memory = gr.inputs.Checkbox(label="Remember previous messages") clear_button = gr.Button("CLEAR CHAT HISTORY", ) max_docs = gr.inputs.Slider(1, DOC_DB_LIMIT, default=3, label="Maximum querys to the DB.", step=1) with gr.Column(): link_output = gr.HTML("") sou = gr.HTML("") clear_button.click(flag,[],[link_output]).then(dc.clr_history,[], [link_output]).then(lambda: None, None, chatbot, queue=False) upload_button.upload(flag,[],[file_output]).then(upload_file, [upload_button, max_docs], file_output).then(dc.clr_history,[], [link_output]).then(lambda: None, None, chatbot, queue=False) with gr.Tab("Change model"): gr.HTML("

Only models from the GGML library are accepted.

") repo_ = gr.Textbox(label="Repository" ,value="TheBloke/Llama-2-7B-Chat-GGML") file_ = gr.Textbox(label="File name" ,value="llama-2-7b-chat.ggmlv3.q2_K.bin") max_tokens = gr.inputs.Slider(1, MAX_NEW_TOKENS, default=16, label="Max new tokens", step=1) temperature = gr.inputs.Slider(0.1, 1., default=0.2, label="Temperature", step=0.1) top_k = gr.inputs.Slider(0.01, 1., default=0.95, label="Top K", step=0.01) top_p = gr.inputs.Slider(0, 100, default=50, label="Top P", step=1) repeat_penalty = gr.inputs.Slider(0.1, 100., default=1.2, label="Repeat penalty", step=0.1) change_model_button = gr.Button("Load GGML Model") default_model = gr.HTML("
Default Model") falcon_button = gr.Button("Load FALCON 7B-Instruct") openai_gpt_model = gr.HTML("
OpenAI Model gpt-3.5-turbo") api_key = gr.Textbox(label="API KEY", value="api_key...") openai_button = gr.Button("Load gpt-3.5-turbo") line_ = gr.HTML("
") model_verify = gr.HTML("Loaded model Falcon 7B-instruct") with gr.Tab("About"): description_md = gr.Markdown(description) msg.submit(predict,[msg, chatbot, max_docs, check_memory],[msg, chatbot]).then(convert,[],[sou]) change_model_button.click(dc.change_llm,[repo_, file_, max_tokens, temperature, top_p, top_k, repeat_penalty, max_docs],[model_verify]) falcon_button.click(dc.default_falcon_model, [], [model_verify]) openai_button.click(clear_api_key, [api_key], [api_key, model_verify]) demo.launch(enable_queue=True)