# DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism [![arXiv](https://img.shields.io/badge/arXiv-Paper-.svg)](https://arxiv.org/abs/2105.02446) [![GitHub Stars](https://img.shields.io/github/stars/MoonInTheRiver/DiffSinger?style=social)](https://github.com/MoonInTheRiver/DiffSinger) [![downloads](https://img.shields.io/github/downloads/MoonInTheRiver/DiffSinger/total.svg)](https://github.com/MoonInTheRiver/DiffSinger/releases) | [Interactive🤗 TTS](https://huggingface.co/spaces/NATSpeech/DiffSpeech) ## DiffSpeech (TTS) ### 1. Preparation #### Data Preparation a) Download and extract the [LJ Speech dataset](https://keithito.com/LJ-Speech-Dataset/), then create a link to the dataset folder: `ln -s /xxx/LJSpeech-1.1/ data/raw/` b) Download and Unzip the [ground-truth duration](https://github.com/MoonInTheRiver/DiffSinger/releases/download/pretrain-model/mfa_outputs.tar) extracted by [MFA](https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner/releases/download/v1.0.1/montreal-forced-aligner_linux.tar.gz): `tar -xvf mfa_outputs.tar; mv mfa_outputs data/processed/ljspeech/` c) Run the following scripts to pack the dataset for training/inference. ```sh export PYTHONPATH=. CUDA_VISIBLE_DEVICES=0 python data_gen/tts/bin/binarize.py --config configs/tts/lj/fs2.yaml # `data/binary/ljspeech` will be generated. ``` #### Vocoder Preparation We provide the pre-trained model of [HifiGAN](https://github.com/MoonInTheRiver/DiffSinger/releases/download/pretrain-model/0414_hifi_lj_1.zip) vocoder. Please unzip this file into `checkpoints` before training your acoustic model. ### 2. Training Example First, you need a pre-trained FastSpeech2 checkpoint. You can use the [pre-trained model](https://github.com/MoonInTheRiver/DiffSinger/releases/download/pretrain-model/fs2_lj_1.zip), or train FastSpeech2 from scratch, run: ```sh CUDA_VISIBLE_DEVICES=0 python tasks/run.py --config configs/tts/lj/fs2.yaml --exp_name fs2_lj_1 --reset ``` Then, to train DiffSpeech, run: ```sh CUDA_VISIBLE_DEVICES=0 python tasks/run.py --config usr/configs/lj_ds_beta6.yaml --exp_name lj_ds_beta6_1213 --reset ``` Remember to adjust the "fs2_ckpt" parameter in `usr/configs/lj_ds_beta6.yaml` to fit your path. ### 3. Inference Example ```sh CUDA_VISIBLE_DEVICES=0 python tasks/run.py --config usr/configs/lj_ds_beta6.yaml --exp_name lj_ds_beta6_1213 --reset --infer ``` We also provide: - the pre-trained model of [DiffSpeech](https://github.com/MoonInTheRiver/DiffSinger/releases/download/pretrain-model/lj_ds_beta6_1213.zip); - the individual pre-trained model of [FastSpeech 2](https://github.com/MoonInTheRiver/DiffSinger/releases/download/pretrain-model/fs2_lj_1.zip) for the shallow diffusion mechanism in DiffSpeech; Remember to put the pre-trained models in `checkpoints` directory. ## Mel Visualization Along vertical axis, DiffSpeech: [0-80]; FastSpeech2: [80-160].
DiffSpeech vs. FastSpeech 2
DiffSpeech-vs-FastSpeech2
DiffSpeech-vs-FastSpeech2
DiffSpeech-vs-FastSpeech2