File size: 55,016 Bytes
e522f71
 
7ecc2b1
 
 
 
 
 
1fdf747
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e522f71
 
 
9071247
 
 
 
 
481fe70
d348ae1
1fdf747
 
 
 
 
 
 
 
 
 
 
7ecc2b1
1fdf747
 
 
 
 
 
 
4b273e2
e522f71
d348ae1
1fdf747
d4ab718
 
1fdf747
 
 
e522f71
 
1fdf747
e522f71
1fdf747
 
e522f71
1fdf747
 
e522f71
1fdf747
e522f71
 
1fdf747
e522f71
1fdf747
e522f71
 
1fdf747
4d027fa
 
 
1fdf747
 
 
e522f71
481fe70
1fdf747
7ecc2b1
e522f71
 
4b273e2
e10b013
4b273e2
 
 
 
 
 
 
 
 
897a02d
4b273e2
 
 
 
1fdf747
4b273e2
 
b647d6d
e522f71
9071247
e522f71
1fdf747
 
 
7ed22bc
9071247
 
 
b647d6d
1fdf747
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9071247
7ecc2b1
 
 
 
 
 
4b273e2
b647d6d
1fdf747
9071247
1fdf747
20d8039
1fdf747
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50194bf
1fdf747
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b273e2
897a02d
c28cabc
481fe70
50194bf
e522f71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ecc2b1
 
e522f71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6115e23
 
 
 
 
 
 
 
 
 
 
e522f71
 
 
 
 
 
7ecc2b1
e522f71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9071247
 
 
 
 
 
 
 
 
 
 
c28cabc
e522f71
1fdf747
 
c28cabc
baddd7a
7ed22bc
897a02d
481fe70
baddd7a
b647d6d
7ed22bc
4b273e2
e522f71
9071247
 
 
 
 
 
 
 
 
 
 
7ecc2b1
 
 
 
 
 
 
 
 
9071247
1fdf747
 
c28cabc
e522f71
 
 
 
 
 
4b273e2
e522f71
 
 
 
 
4b273e2
e522f71
 
4b273e2
e522f71
 
 
5ccf4ca
 
e522f71
b647d6d
 
 
e522f71
b647d6d
 
e522f71
b647d6d
 
 
 
 
e522f71
 
 
b647d6d
 
 
e522f71
b647d6d
 
e522f71
b647d6d
 
 
e522f71
 
 
 
 
 
 
 
 
 
c28cabc
e522f71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d027fa
e522f71
 
7ecc2b1
 
e522f71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ecc2b1
e522f71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9071247
 
 
 
 
 
e522f71
 
d2b1c6e
 
 
 
b647d6d
1fdf747
 
7ecc2b1
1fdf747
 
c9bc7d9
1fdf747
897a02d
1fdf747
481fe70
4d027fa
 
 
 
 
481fe70
 
 
 
 
 
897a02d
1fdf747
c9bc7d9
7ecc2b1
c28cabc
e10b013
 
 
 
 
 
3e25783
1fdf747
e522f71
1fdf747
e522f71
1fdf747
63aba14
 
481fe70
 
50194bf
481fe70
 
 
 
 
 
 
 
 
 
 
 
 
63aba14
481fe70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fdf747
481fe70
 
 
 
 
 
 
 
 
 
 
 
7ecc2b1
 
 
 
 
 
 
 
481fe70
 
 
 
 
 
 
 
 
 
 
 
 
4d027fa
1fdf747
481fe70
 
4d027fa
4b273e2
481fe70
4b273e2
1fdf747
481fe70
 
 
 
 
 
 
1fdf747
 
4d027fa
1fdf747
4b273e2
481fe70
 
 
4b273e2
1fdf747
4b273e2
d348ae1
4d027fa
d348ae1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
481fe70
 
4b273e2
b647d6d
e522f71
 
b647d6d
e522f71
 
63aba14
e522f71
63aba14
1fdf747
 
 
 
 
 
 
 
b647d6d
e522f71
f4ef5e2
 
9071247
27fa464
 
 
 
e10b013
63aba14
 
 
 
 
 
1fdf747
e10b013
e522f71
 
 
 
 
9366af3
e522f71
 
 
7ed22bc
e522f71
 
7ed22bc
9071247
c28cabc
481fe70
 
 
 
 
 
e522f71
 
27fa464
7ecc2b1
 
e522f71
f4ef5e2
e522f71
c28cabc
9071247
 
27fa464
9071247
 
 
27fa464
9071247
 
 
 
 
 
 
7ecc2b1
 
 
27fa464
7ecc2b1
 
 
9071247
 
 
 
7ecc2b1
 
 
 
 
 
 
 
 
27fa464
9071247
 
 
d4ab718
 
 
 
7ecc2b1
 
 
 
d4ab718
 
 
 
 
 
 
 
 
 
 
 
7ecc2b1
 
 
d4ab718
 
 
 
 
 
 
 
4b273e2
d4ab718
 
 
 
 
9071247
 
 
27fa464
9071247
 
 
 
 
 
 
 
 
27fa464
7ecc2b1
 
 
9071247
 
c28cabc
9071247
 
 
 
 
 
 
 
 
 
 
 
27fa464
1fdf747
27fa464
9071247
 
 
4b273e2
d348ae1
 
 
9071247
 
3e25783
9071247
 
 
 
e10b013
 
c2668d0
e10b013
 
 
 
 
 
 
 
 
 
 
 
 
 
9071247
897a02d
7ecc2b1
 
 
 
 
 
4d027fa
7ecc2b1
4d027fa
897a02d
 
4d027fa
 
897a02d
 
e10b013
9071247
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e522f71
 
 
63aba14
 
 
 
7ecc2b1
 
 
 
4b273e2
9071247
e522f71
4b273e2
 
 
e522f71
4b273e2
e522f71
9071247
e522f71
 
 
 
 
 
 
 
 
 
 
 
 
 
27fa464
e522f71
 
 
 
 
9071247
e522f71
 
4b273e2
e522f71
9071247
e522f71
 
 
 
 
 
 
 
 
 
 
 
 
 
9071247
e522f71
 
 
 
 
9071247
e522f71
 
63aba14
1372fa8
 
e522f71
 
9071247
e522f71
 
9071247
e522f71
3e25783
9071247
e522f71
 
 
 
 
 
 
1fdf747
e522f71
 
 
 
9071247
e522f71
 
 
 
 
 
1fdf747
e522f71
 
 
 
 
1372fa8
 
7ecc2b1
3e25783
7ecc2b1
e522f71
 
1372fa8
 
 
e522f71
9071247
e522f71
 
1fdf747
3e25783
e522f71
 
 
 
 
 
897a02d
1fdf747
 
6115e23
1fdf747
6115e23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
481fe70
 
6115e23
1fdf747
6115e23
 
1fdf747
63aba14
e522f71
63aba14
e522f71
 
 
 
 
 
 
 
4b273e2
 
9071247
e522f71
4b273e2
e522f71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e25783
d4ab718
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d348ae1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e522f71
9071247
 
 
 
 
 
 
 
 
 
481fe70
e522f71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ecc2b1
 
e522f71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6115e23
 
 
 
 
 
 
 
 
 
 
e522f71
 
 
 
 
 
7ecc2b1
e522f71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9071247
 
 
 
 
 
 
 
 
 
 
c28cabc
481fe70
 
 
e522f71
1fdf747
e522f71
9071247
e522f71
 
63aba14
e522f71
 
 
 
e10b013
7ecc2b1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
import spaces
import os
from stablepy import (
    Model_Diffusers,
    SCHEDULE_TYPE_OPTIONS,
    SCHEDULE_PREDICTION_TYPE_OPTIONS,
    check_scheduler_compatibility,
)
from constants import (
    DIRECTORY_MODELS,
    DIRECTORY_LORAS,
    DIRECTORY_VAES,
    DIRECTORY_EMBEDS,
    DOWNLOAD_MODEL,
    DOWNLOAD_VAE,
    DOWNLOAD_LORA,
    LOAD_DIFFUSERS_FORMAT_MODEL,
    DIFFUSERS_FORMAT_LORAS,
    DOWNLOAD_EMBEDS,
    CIVITAI_API_KEY,
    HF_TOKEN,
    PREPROCESSOR_CONTROLNET,
    TASK_STABLEPY,
    TASK_MODEL_LIST,
    UPSCALER_DICT_GUI,
    UPSCALER_KEYS,
    PROMPT_W_OPTIONS,
    WARNING_MSG_VAE,
    SDXL_TASK,
    MODEL_TYPE_TASK,
    POST_PROCESSING_SAMPLER,
    SUBTITLE_GUI,
    HELP_GUI,
    EXAMPLES_GUI_HELP,
    EXAMPLES_GUI,
    RESOURCES,
)
from stablepy.diffusers_vanilla.style_prompt_config import STYLE_NAMES
import torch
import re
from stablepy import (
    scheduler_names,
    IP_ADAPTERS_SD,
    IP_ADAPTERS_SDXL,
)
import time
from PIL import ImageFile
from utils import (
    download_things,
    get_model_list,
    extract_parameters,
    get_my_lora,
    get_model_type,
    extract_exif_data,
    create_mask_now,
    download_diffuser_repo,
    progress_step_bar,
    html_template_message,
    escape_html,
)
from datetime import datetime
import gradio as gr
import logging
import diffusers
import warnings
from stablepy import logger
# import urllib.parse

ImageFile.LOAD_TRUNCATED_IMAGES = True
# os.environ["PYTORCH_NO_CUDA_MEMORY_CACHING"] = "1"
print(os.getenv("SPACES_ZERO_GPU"))

directories = [DIRECTORY_MODELS, DIRECTORY_LORAS, DIRECTORY_VAES, DIRECTORY_EMBEDS]
for directory in directories:
    os.makedirs(directory, exist_ok=True)

# Download stuffs
for url in [url.strip() for url in DOWNLOAD_MODEL.split(',')]:
    if not os.path.exists(f"./models/{url.split('/')[-1]}"):
        download_things(DIRECTORY_MODELS, url, HF_TOKEN, CIVITAI_API_KEY)
for url in [url.strip() for url in DOWNLOAD_VAE.split(',')]:
    if not os.path.exists(f"./vaes/{url.split('/')[-1]}"):
        download_things(DIRECTORY_VAES, url, HF_TOKEN, CIVITAI_API_KEY)
for url in [url.strip() for url in DOWNLOAD_LORA.split(',')]:
    if not os.path.exists(f"./loras/{url.split('/')[-1]}"):
        download_things(DIRECTORY_LORAS, url, HF_TOKEN, CIVITAI_API_KEY)

# Download Embeddings
for url_embed in DOWNLOAD_EMBEDS:
    if not os.path.exists(f"./embedings/{url_embed.split('/')[-1]}"):
        download_things(DIRECTORY_EMBEDS, url_embed, HF_TOKEN, CIVITAI_API_KEY)

# Build list models
embed_list = get_model_list(DIRECTORY_EMBEDS)
embed_list = [
    (os.path.splitext(os.path.basename(emb))[0], emb) for emb in embed_list
]
model_list = get_model_list(DIRECTORY_MODELS)
model_list = LOAD_DIFFUSERS_FORMAT_MODEL + model_list
lora_model_list = get_model_list(DIRECTORY_LORAS)
lora_model_list.insert(0, "None")
lora_model_list = lora_model_list + DIFFUSERS_FORMAT_LORAS
vae_model_list = get_model_list(DIRECTORY_VAES)
vae_model_list.insert(0, "BakedVAE")
vae_model_list.insert(0, "None")

print('\033[33m🏁 Download and listing of valid models completed.\033[0m')

#######################
# GUI
#######################
logging.getLogger("diffusers").setLevel(logging.ERROR)
diffusers.utils.logging.set_verbosity(40)
warnings.filterwarnings(action="ignore", category=FutureWarning, module="diffusers")
warnings.filterwarnings(action="ignore", category=UserWarning, module="diffusers")
warnings.filterwarnings(action="ignore", category=FutureWarning, module="transformers")
logger.setLevel(logging.DEBUG)

CSS = """
.contain { display: flex; flex-direction: column; }
#component-0 { height: 100%; }
#gallery { flex-grow: 1; }
#load_model { height: 50px; }
"""


class GuiSD:
    def __init__(self, stream=True):
        self.model = None
        self.status_loading = False
        self.sleep_loading = 4
        self.last_load = datetime.now()

    def load_new_model(self, model_name, vae_model, task, progress=gr.Progress(track_tqdm=True)):

        vae_model = vae_model if vae_model != "None" else None
        model_type = get_model_type(model_name)
        dtype_model = torch.bfloat16 if model_type == "FLUX" else torch.float16

        if not os.path.exists(model_name):
            _ = download_diffuser_repo(
                repo_name=model_name,
                model_type=model_type,
                revision="main",
                token=True,
            )

        for i in range(68):
            if not self.status_loading:
                self.status_loading = True
                if i > 0:
                    time.sleep(self.sleep_loading)
                    print("Previous model ops...")
                break
            time.sleep(0.5)
            print(f"Waiting queue {i}")
            yield "Waiting queue"

        self.status_loading = True

        yield f"Loading model: {model_name}"

        if vae_model == "BakedVAE":
            if not os.path.exists(model_name):
                vae_model = model_name
            else:
                vae_model = None
        elif vae_model:
            vae_type = "SDXL" if "sdxl" in vae_model.lower() else "SD 1.5"
            if model_type != vae_type:
                gr.Warning(WARNING_MSG_VAE)

        print("Loading model...")

        try:
            start_time = time.time()

            if self.model is None:
                self.model = Model_Diffusers(
                    base_model_id=model_name,
                    task_name=TASK_STABLEPY[task],
                    vae_model=vae_model,
                    type_model_precision=dtype_model,
                    retain_task_model_in_cache=False,
                    device="cpu",
                )
            else:

                if self.model.base_model_id != model_name:
                    load_now_time = datetime.now()
                    elapsed_time = max((load_now_time - self.last_load).total_seconds(), 0)

                    if elapsed_time <= 8:
                        print("Waiting for the previous model's time ops...")
                        time.sleep(8-elapsed_time)

                self.model.device = torch.device("cpu")
                self.model.load_pipe(
                    model_name,
                    task_name=TASK_STABLEPY[task],
                    vae_model=vae_model,
                    type_model_precision=dtype_model,
                    retain_task_model_in_cache=False,
                )

            end_time = time.time()
            self.sleep_loading = max(min(int(end_time - start_time), 10), 4)
        except Exception as e:
            self.last_load = datetime.now()
            self.status_loading = False
            self.sleep_loading = 4
            raise e

        self.last_load = datetime.now()
        self.status_loading = False

        yield f"Model loaded: {model_name}"

    # @spaces.GPU(duration=59)
    @torch.inference_mode()
    def generate_pipeline(
        self,
        prompt,
        neg_prompt,
        num_images,
        steps,
        cfg,
        clip_skip,
        seed,
        lora1,
        lora_scale1,
        lora2,
        lora_scale2,
        lora3,
        lora_scale3,
        lora4,
        lora_scale4,
        lora5,
        lora_scale5,
        sampler,
        schedule_type,
        schedule_prediction_type,
        img_height,
        img_width,
        model_name,
        vae_model,
        task,
        image_control,
        preprocessor_name,
        preprocess_resolution,
        image_resolution,
        style_prompt,  # list []
        style_json_file,
        image_mask,
        strength,
        low_threshold,
        high_threshold,
        value_threshold,
        distance_threshold,
        controlnet_output_scaling_in_unet,
        controlnet_start_threshold,
        controlnet_stop_threshold,
        textual_inversion,
        syntax_weights,
        upscaler_model_path,
        upscaler_increases_size,
        esrgan_tile,
        esrgan_tile_overlap,
        hires_steps,
        hires_denoising_strength,
        hires_sampler,
        hires_prompt,
        hires_negative_prompt,
        hires_before_adetailer,
        hires_after_adetailer,
        loop_generation,
        leave_progress_bar,
        disable_progress_bar,
        image_previews,
        display_images,
        save_generated_images,
        filename_pattern,
        image_storage_location,
        retain_compel_previous_load,
        retain_detailfix_model_previous_load,
        retain_hires_model_previous_load,
        t2i_adapter_preprocessor,
        t2i_adapter_conditioning_scale,
        t2i_adapter_conditioning_factor,
        xformers_memory_efficient_attention,
        freeu,
        generator_in_cpu,
        adetailer_inpaint_only,
        adetailer_verbose,
        adetailer_sampler,
        adetailer_active_a,
        prompt_ad_a,
        negative_prompt_ad_a,
        strength_ad_a,
        face_detector_ad_a,
        person_detector_ad_a,
        hand_detector_ad_a,
        mask_dilation_a,
        mask_blur_a,
        mask_padding_a,
        adetailer_active_b,
        prompt_ad_b,
        negative_prompt_ad_b,
        strength_ad_b,
        face_detector_ad_b,
        person_detector_ad_b,
        hand_detector_ad_b,
        mask_dilation_b,
        mask_blur_b,
        mask_padding_b,
        retain_task_cache_gui,
        image_ip1,
        mask_ip1,
        model_ip1,
        mode_ip1,
        scale_ip1,
        image_ip2,
        mask_ip2,
        model_ip2,
        mode_ip2,
        scale_ip2,
        pag_scale,
    ):
        info_state = html_template_message("Navigating latent space...")
        yield info_state, gr.update(), gr.update()

        vae_model = vae_model if vae_model != "None" else None
        loras_list = [lora1, lora2, lora3, lora4, lora5]
        vae_msg = f"VAE: {vae_model}" if vae_model else ""
        msg_lora = ""

        print("Config model:", model_name, vae_model, loras_list)

        task = TASK_STABLEPY[task]

        params_ip_img = []
        params_ip_msk = []
        params_ip_model = []
        params_ip_mode = []
        params_ip_scale = []

        all_adapters = [
            (image_ip1, mask_ip1, model_ip1, mode_ip1, scale_ip1),
            (image_ip2, mask_ip2, model_ip2, mode_ip2, scale_ip2),
        ]

        if not hasattr(self.model.pipe, "transformer"):
            for imgip, mskip, modelip, modeip, scaleip in all_adapters:
                if imgip:
                    params_ip_img.append(imgip)
                    if mskip:
                        params_ip_msk.append(mskip)
                    params_ip_model.append(modelip)
                    params_ip_mode.append(modeip)
                    params_ip_scale.append(scaleip)

        concurrency = 5
        self.model.stream_config(concurrency=concurrency, latent_resize_by=1, vae_decoding=False)

        if task != "txt2img" and not image_control:
            raise ValueError("No control image found: To use this function, you have to upload an image in 'Image ControlNet/Inpaint/Img2img'")

        if task == "inpaint" and not image_mask:
            raise ValueError("No mask image found: Specify one in 'Image Mask'")

        if upscaler_model_path in UPSCALER_KEYS[:9]:
            upscaler_model = upscaler_model_path
        else:
            directory_upscalers = 'upscalers'
            os.makedirs(directory_upscalers, exist_ok=True)

            url_upscaler = UPSCALER_DICT_GUI[upscaler_model_path]

            if not os.path.exists(f"./upscalers/{url_upscaler.split('/')[-1]}"):
                download_things(directory_upscalers, url_upscaler, HF_TOKEN)

            upscaler_model = f"./upscalers/{url_upscaler.split('/')[-1]}"

        logging.getLogger("ultralytics").setLevel(logging.INFO if adetailer_verbose else logging.ERROR)

        adetailer_params_A = {
            "face_detector_ad": face_detector_ad_a,
            "person_detector_ad": person_detector_ad_a,
            "hand_detector_ad": hand_detector_ad_a,
            "prompt": prompt_ad_a,
            "negative_prompt": negative_prompt_ad_a,
            "strength": strength_ad_a,
            # "image_list_task" : None,
            "mask_dilation": mask_dilation_a,
            "mask_blur": mask_blur_a,
            "mask_padding": mask_padding_a,
            "inpaint_only": adetailer_inpaint_only,
            "sampler": adetailer_sampler,
        }

        adetailer_params_B = {
            "face_detector_ad": face_detector_ad_b,
            "person_detector_ad": person_detector_ad_b,
            "hand_detector_ad": hand_detector_ad_b,
            "prompt": prompt_ad_b,
            "negative_prompt": negative_prompt_ad_b,
            "strength": strength_ad_b,
            # "image_list_task" : None,
            "mask_dilation": mask_dilation_b,
            "mask_blur": mask_blur_b,
            "mask_padding": mask_padding_b,
        }
        pipe_params = {
            "prompt": prompt,
            "negative_prompt": neg_prompt,
            "img_height": img_height,
            "img_width": img_width,
            "num_images": num_images,
            "num_steps": steps,
            "guidance_scale": cfg,
            "clip_skip": clip_skip,
            "pag_scale": float(pag_scale),
            "seed": seed,
            "image": image_control,
            "preprocessor_name": preprocessor_name,
            "preprocess_resolution": preprocess_resolution,
            "image_resolution": image_resolution,
            "style_prompt": style_prompt if style_prompt else "",
            "style_json_file": "",
            "image_mask": image_mask,  # only for Inpaint
            "strength": strength,  # only for Inpaint or ...
            "low_threshold": low_threshold,
            "high_threshold": high_threshold,
            "value_threshold": value_threshold,
            "distance_threshold": distance_threshold,
            "lora_A": lora1 if lora1 != "None" else None,
            "lora_scale_A": lora_scale1,
            "lora_B": lora2 if lora2 != "None" else None,
            "lora_scale_B": lora_scale2,
            "lora_C": lora3 if lora3 != "None" else None,
            "lora_scale_C": lora_scale3,
            "lora_D": lora4 if lora4 != "None" else None,
            "lora_scale_D": lora_scale4,
            "lora_E": lora5 if lora5 != "None" else None,
            "lora_scale_E": lora_scale5,
            "textual_inversion": embed_list if textual_inversion else [],
            "syntax_weights": syntax_weights,  # "Classic"
            "sampler": sampler,
            "schedule_type": schedule_type,
            "schedule_prediction_type": schedule_prediction_type,
            "xformers_memory_efficient_attention": xformers_memory_efficient_attention,
            "gui_active": True,
            "loop_generation": loop_generation,
            "controlnet_conditioning_scale": float(controlnet_output_scaling_in_unet),
            "control_guidance_start": float(controlnet_start_threshold),
            "control_guidance_end": float(controlnet_stop_threshold),
            "generator_in_cpu": generator_in_cpu,
            "FreeU": freeu,
            "adetailer_A": adetailer_active_a,
            "adetailer_A_params": adetailer_params_A,
            "adetailer_B": adetailer_active_b,
            "adetailer_B_params": adetailer_params_B,
            "leave_progress_bar": leave_progress_bar,
            "disable_progress_bar": disable_progress_bar,
            "image_previews": image_previews,
            "display_images": display_images,
            "save_generated_images": save_generated_images,
            "filename_pattern": filename_pattern,
            "image_storage_location": image_storage_location,
            "retain_compel_previous_load": retain_compel_previous_load,
            "retain_detailfix_model_previous_load": retain_detailfix_model_previous_load,
            "retain_hires_model_previous_load": retain_hires_model_previous_load,
            "t2i_adapter_preprocessor": t2i_adapter_preprocessor,
            "t2i_adapter_conditioning_scale": float(t2i_adapter_conditioning_scale),
            "t2i_adapter_conditioning_factor": float(t2i_adapter_conditioning_factor),
            "upscaler_model_path": upscaler_model,
            "upscaler_increases_size": upscaler_increases_size,
            "esrgan_tile": esrgan_tile,
            "esrgan_tile_overlap": esrgan_tile_overlap,
            "hires_steps": hires_steps,
            "hires_denoising_strength": hires_denoising_strength,
            "hires_prompt": hires_prompt,
            "hires_negative_prompt": hires_negative_prompt,
            "hires_sampler": hires_sampler,
            "hires_before_adetailer": hires_before_adetailer,
            "hires_after_adetailer": hires_after_adetailer,
            "ip_adapter_image": params_ip_img,
            "ip_adapter_mask": params_ip_msk,
            "ip_adapter_model": params_ip_model,
            "ip_adapter_mode": params_ip_mode,
            "ip_adapter_scale": params_ip_scale,
        }

        self.model.device = torch.device("cuda:0")
        if hasattr(self.model.pipe, "transformer") and loras_list != ["None"] * 5:
            self.model.pipe.transformer.to(self.model.device)
            print("transformer to cuda")

        actual_progress = 0
        info_images = gr.update()
        for img, [seed, image_path, metadata] in self.model(**pipe_params):
            info_state = progress_step_bar(actual_progress, steps)
            actual_progress += concurrency
            if image_path:
                info_images = f"Seeds: {str(seed)}"
                if vae_msg:
                    info_images = info_images + "<br>" + vae_msg

                if "Cannot copy out of meta tensor; no data!" in self.model.last_lora_error:
                    msg_ram = "Unable to process the LoRAs due to high RAM usage; please try again later."
                    print(msg_ram)
                    msg_lora += f"<br>{msg_ram}"

                for status, lora in zip(self.model.lora_status, self.model.lora_memory):
                    if status:
                        msg_lora += f"<br>Loaded: {lora}"
                    elif status is not None:
                        msg_lora += f"<br>Error with: {lora}"

                if msg_lora:
                    info_images += msg_lora

                info_images = info_images + "<br>" + "GENERATION DATA:<br>" + escape_html(metadata[0]) + "<br>-------<br>"

                download_links = "<br>".join(
                    [
                        f'<a href="{path.replace("/images/", "/file=/home/user/app/images/")}" download="{os.path.basename(path)}">Download Image {i + 1}</a>'
                        for i, path in enumerate(image_path)
                    ]
                )
                if save_generated_images:
                    info_images += f"<br>{download_links}"

                info_state = "COMPLETE"

            yield info_state, img, info_images


def dynamic_gpu_duration(func, duration, *args):

    # @torch.inference_mode()
    @spaces.GPU(duration=duration)
    def wrapped_func():
        yield from func(*args)

    return wrapped_func()


@spaces.GPU
def dummy_gpu():
    return None


def sd_gen_generate_pipeline(*args):

    gpu_duration_arg = int(args[-1]) if args[-1] else 59
    verbose_arg = int(args[-2])
    load_lora_cpu = args[-3]
    generation_args = args[:-3]
    lora_list = [
        None if item == "None" else item
        for item in [args[7], args[9], args[11], args[13], args[15]]
    ]
    lora_status = [None] * 5

    msg_load_lora = "Updating LoRAs in GPU..."
    if load_lora_cpu:
        msg_load_lora = "Updating LoRAs in CPU (Slow but saves GPU usage)..."

    if lora_list != sd_gen.model.lora_memory and lora_list != [None] * 5:
        yield msg_load_lora, gr.update(), gr.update()

    # Load lora in CPU
    if load_lora_cpu:
        lora_status = sd_gen.model.lora_merge(
            lora_A=lora_list[0], lora_scale_A=args[8],
            lora_B=lora_list[1], lora_scale_B=args[10],
            lora_C=lora_list[2], lora_scale_C=args[12],
            lora_D=lora_list[3], lora_scale_D=args[14],
            lora_E=lora_list[4], lora_scale_E=args[16],
        )
        print(lora_status)

    sampler_name = args[17]
    schedule_type_name = args[18]
    _, _, msg_sampler = check_scheduler_compatibility(
        sd_gen.model.class_name, sampler_name, schedule_type_name
    )
    if msg_sampler:
        gr.Warning(msg_sampler)

    if verbose_arg:
        for status, lora in zip(lora_status, lora_list):
            if status:
                gr.Info(f"LoRA loaded in CPU: {lora}")
            elif status is not None:
                gr.Warning(f"Failed to load LoRA: {lora}")

        if lora_status == [None] * 5 and sd_gen.model.lora_memory != [None] * 5 and load_lora_cpu:
            lora_cache_msg = ", ".join(
                str(x) for x in sd_gen.model.lora_memory if x is not None
            )
            gr.Info(f"LoRAs in cache: {lora_cache_msg}")

    msg_request = f"Requesting {gpu_duration_arg}s. of GPU time.\nModel: {sd_gen.model.base_model_id}"
    if verbose_arg:
        gr.Info(msg_request)
        print(msg_request)
    yield msg_request.replace("\n", "<br>"), gr.update(), gr.update()

    start_time = time.time()

    # yield from sd_gen.generate_pipeline(*generation_args)
    yield from dynamic_gpu_duration(
        sd_gen.generate_pipeline,
        gpu_duration_arg,
        *generation_args,
    )

    end_time = time.time()
    execution_time = end_time - start_time
    msg_task_complete = (
        f"GPU task complete in: {int(round(execution_time, 0) + 1)} seconds"
    )

    if verbose_arg:
        gr.Info(msg_task_complete)
        print(msg_task_complete)

    yield msg_task_complete, gr.update(), gr.update()


@spaces.GPU(duration=15)
def esrgan_upscale(image, upscaler_name, upscaler_size):
    if image is None: return None

    from stablepy.diffusers_vanilla.utils import save_pil_image_with_metadata
    from stablepy import UpscalerESRGAN

    exif_image = extract_exif_data(image)

    url_upscaler = UPSCALER_DICT_GUI[upscaler_name]
    directory_upscalers = 'upscalers'
    os.makedirs(directory_upscalers, exist_ok=True)
    if not os.path.exists(f"./upscalers/{url_upscaler.split('/')[-1]}"):
        download_things(directory_upscalers, url_upscaler, HF_TOKEN)

    scaler_beta = UpscalerESRGAN(0, 0)
    image_up = scaler_beta.upscale(image, upscaler_size, f"./upscalers/{url_upscaler.split('/')[-1]}")

    image_path = save_pil_image_with_metadata(image_up, f'{os.getcwd()}/up_images', exif_image)

    return image_path


dynamic_gpu_duration.zerogpu = True
sd_gen_generate_pipeline.zerogpu = True
sd_gen = GuiSD()

with gr.Blocks(theme="NoCrypt/miku", css=CSS) as app:
    gr.Markdown("# 🧩 DiffuseCraft")
    gr.Markdown(SUBTITLE_GUI)
    with gr.Tab("Generation"):
        with gr.Row():

            with gr.Column(scale=2):

                def update_task_options(model_name, task_name):
                    new_choices = MODEL_TYPE_TASK[get_model_type(model_name)]

                    if task_name not in new_choices:
                        task_name = "txt2img"

                    return gr.update(value=task_name, choices=new_choices)

                task_gui = gr.Dropdown(label="Task", choices=SDXL_TASK, value=TASK_MODEL_LIST[0])
                model_name_gui = gr.Dropdown(label="Model", choices=model_list, value=model_list[0], allow_custom_value=True)
                prompt_gui = gr.Textbox(lines=5, placeholder="Enter prompt", label="Prompt")
                neg_prompt_gui = gr.Textbox(lines=3, placeholder="Enter Neg prompt", label="Negative prompt")
                with gr.Row(equal_height=False):
                    set_params_gui = gr.Button(value="↙️", variant="secondary", size="sm")
                    clear_prompt_gui = gr.Button(value="🗑️", variant="secondary", size="sm")
                    set_random_seed = gr.Button(value="🎲", variant="secondary", size="sm")
                generate_button = gr.Button(value="GENERATE IMAGE", variant="primary")

                model_name_gui.change(
                    update_task_options,
                    [model_name_gui, task_gui],
                    [task_gui],
                )

                load_model_gui = gr.HTML(elem_id="load_model", elem_classes="contain")

                result_images = gr.Gallery(
                    label="Generated images",
                    show_label=False,
                    elem_id="gallery",
                    columns=[2],
                    rows=[2],
                    object_fit="contain",
                    # height="auto",
                    interactive=False,
                    preview=False,
                    selected_index=50,
                )

                actual_task_info = gr.HTML()

                with gr.Row(equal_height=False, variant="default"):
                    gpu_duration_gui = gr.Number(minimum=5, maximum=240, value=59, show_label=False, container=False, info="GPU time duration (seconds)")
                    with gr.Column():
                        verbose_info_gui = gr.Checkbox(value=False, container=False, label="Status info")
                        load_lora_cpu_gui = gr.Checkbox(value=False, container=False, label="Load LoRAs on CPU (Save GPU time)")

            with gr.Column(scale=1):
                steps_gui = gr.Slider(minimum=1, maximum=100, step=1, value=30, label="Steps")
                cfg_gui = gr.Slider(minimum=0, maximum=30, step=0.5, value=7., label="CFG")
                sampler_gui = gr.Dropdown(label="Sampler", choices=scheduler_names, value="Euler")
                schedule_type_gui = gr.Dropdown(label="Schedule type", choices=SCHEDULE_TYPE_OPTIONS, value=SCHEDULE_TYPE_OPTIONS[0])
                img_width_gui = gr.Slider(minimum=64, maximum=4096, step=8, value=1024, label="Img Width")
                img_height_gui = gr.Slider(minimum=64, maximum=4096, step=8, value=1024, label="Img Height")
                seed_gui = gr.Number(minimum=-1, maximum=9999999999, value=-1, label="Seed")
                pag_scale_gui = gr.Slider(minimum=0.0, maximum=10.0, step=0.1, value=0.0, label="PAG Scale")
                with gr.Row():
                    clip_skip_gui = gr.Checkbox(value=True, label="Layer 2 Clip Skip")
                    free_u_gui = gr.Checkbox(value=False, label="FreeU")

                with gr.Row(equal_height=False):

                    def run_set_params_gui(base_prompt, name_model):
                        valid_receptors = {  # default values
                            "prompt": gr.update(value=base_prompt),
                            "neg_prompt": gr.update(value=""),
                            "Steps": gr.update(value=30),
                            "width": gr.update(value=1024),
                            "height": gr.update(value=1024),
                            "Seed": gr.update(value=-1),
                            "Sampler": gr.update(value="Euler"),
                            "CFG scale": gr.update(value=7.),  # cfg
                            "Clip skip": gr.update(value=True),
                            "Model": gr.update(value=name_model),
                            "Schedule type": gr.update(value="Automatic"),
                            "PAG": gr.update(value=.0),
                            "FreeU": gr.update(value=False),
                        }
                        valid_keys = list(valid_receptors.keys())

                        parameters = extract_parameters(base_prompt)
                        # print(parameters)

                        if "Sampler" in parameters:
                            value_sampler = parameters["Sampler"]
                            for s_type in SCHEDULE_TYPE_OPTIONS:
                                if s_type in value_sampler:
                                    value_sampler = value_sampler.replace(s_type, "").strip()
                                    parameters["Sampler"] = value_sampler
                                    parameters["Schedule type"] = s_type

                        for key, val in parameters.items():
                            # print(val)
                            if key in valid_keys:
                                try:
                                    if key == "Sampler":
                                        if val not in scheduler_names:
                                            continue
                                    if key == "Schedule type":
                                        if val not in SCHEDULE_TYPE_OPTIONS:
                                            val = "Automatic"
                                    elif key == "Clip skip":
                                        if "," in str(val):
                                            val = val.replace(",", "")
                                        if int(val) >= 2:
                                            val = True
                                    if key == "prompt":
                                        if ">" in val and "<" in val:
                                            val = re.sub(r'<[^>]+>', '', val)
                                            print("Removed LoRA written in the prompt")
                                    if key in ["prompt", "neg_prompt"]:
                                        val = re.sub(r'\s+', ' ', re.sub(r',+', ',', val)).strip()
                                    if key in ["Steps", "width", "height", "Seed"]:
                                        val = int(val)
                                    if key == "FreeU":
                                        val = True
                                    if key in ["CFG scale", "PAG"]:
                                        val = float(val)
                                    if key == "Model":
                                        filtered_models = [m for m in model_list if val in m]
                                        if filtered_models:
                                            val = filtered_models[0]
                                        else:
                                            val = name_model
                                    if key == "Seed":
                                        continue
                                    valid_receptors[key] = gr.update(value=val)
                                    # print(val, type(val))
                                    # print(valid_receptors)
                                except Exception as e:
                                    print(str(e))
                        return [value for value in valid_receptors.values()]

                    set_params_gui.click(
                        run_set_params_gui, [prompt_gui, model_name_gui], [
                            prompt_gui,
                            neg_prompt_gui,
                            steps_gui,
                            img_width_gui,
                            img_height_gui,
                            seed_gui,
                            sampler_gui,
                            cfg_gui,
                            clip_skip_gui,
                            model_name_gui,
                            schedule_type_gui,
                            pag_scale_gui,
                            free_u_gui,
                        ],
                    )

                    def run_clear_prompt_gui():
                        return gr.update(value=""), gr.update(value="")
                    clear_prompt_gui.click(
                        run_clear_prompt_gui, [], [prompt_gui, neg_prompt_gui]
                    )

                    def run_set_random_seed():
                        return -1
                    set_random_seed.click(
                        run_set_random_seed, [], seed_gui
                    )

                num_images_gui = gr.Slider(minimum=1, maximum=5, step=1, value=1, label="Images")
                prompt_syntax_gui = gr.Dropdown(label="Prompt Syntax", choices=PROMPT_W_OPTIONS, value=PROMPT_W_OPTIONS[1][1])
                vae_model_gui = gr.Dropdown(label="VAE Model", choices=vae_model_list, value=vae_model_list[0])

                with gr.Accordion("Hires fix", open=False, visible=True):

                    upscaler_model_path_gui = gr.Dropdown(label="Upscaler", choices=UPSCALER_KEYS, value=UPSCALER_KEYS[0])
                    upscaler_increases_size_gui = gr.Slider(minimum=1.1, maximum=4., step=0.1, value=1.2, label="Upscale by")
                    esrgan_tile_gui = gr.Slider(minimum=0, value=0, maximum=500, step=1, label="ESRGAN Tile")
                    esrgan_tile_overlap_gui = gr.Slider(minimum=1, maximum=200, step=1, value=8, label="ESRGAN Tile Overlap")
                    hires_steps_gui = gr.Slider(minimum=0, value=30, maximum=100, step=1, label="Hires Steps")
                    hires_denoising_strength_gui = gr.Slider(minimum=0.1, maximum=1.0, step=0.01, value=0.55, label="Hires Denoising Strength")
                    hires_sampler_gui = gr.Dropdown(label="Hires Sampler", choices=POST_PROCESSING_SAMPLER, value=POST_PROCESSING_SAMPLER[0])
                    hires_prompt_gui = gr.Textbox(label="Hires Prompt", placeholder="Main prompt will be use", lines=3)
                    hires_negative_prompt_gui = gr.Textbox(label="Hires Negative Prompt", placeholder="Main negative prompt will be use", lines=3)

                with gr.Accordion("LoRA", open=False, visible=True):

                    def lora_dropdown(label):
                        return gr.Dropdown(label=label, choices=lora_model_list, value="None", allow_custom_value=True)

                    def lora_scale_slider(label):
                        return gr.Slider(minimum=-2, maximum=2, step=0.01, value=0.33, label=label)

                    lora1_gui = lora_dropdown("Lora1")
                    lora_scale_1_gui = lora_scale_slider("Lora Scale 1")
                    lora2_gui = lora_dropdown("Lora2")
                    lora_scale_2_gui = lora_scale_slider("Lora Scale 2")
                    lora3_gui = lora_dropdown("Lora3")
                    lora_scale_3_gui = lora_scale_slider("Lora Scale 3")
                    lora4_gui = lora_dropdown("Lora4")
                    lora_scale_4_gui = lora_scale_slider("Lora Scale 4")
                    lora5_gui = lora_dropdown("Lora5")
                    lora_scale_5_gui = lora_scale_slider("Lora Scale 5")

                    with gr.Accordion("From URL", open=False, visible=True):
                        text_lora = gr.Textbox(
                            label="LoRA's download URL",
                            placeholder="https://civitai.com/api/download/models/28907",
                            lines=1,
                            info="It has to be .safetensors files, and you can also download them from Hugging Face.",
                        )
                        romanize_text = gr.Checkbox(value=False, label="Transliterate name")
                        button_lora = gr.Button("Get and Refresh the LoRA Lists")
                        new_lora_status = gr.HTML()
                        button_lora.click(
                            get_my_lora,
                            [text_lora, romanize_text],
                            [lora1_gui, lora2_gui, lora3_gui, lora4_gui, lora5_gui, new_lora_status]
                        )

                with gr.Accordion("IP-Adapter", open=False, visible=True):

                    IP_MODELS = sorted(list(set(IP_ADAPTERS_SD + IP_ADAPTERS_SDXL)))
                    MODE_IP_OPTIONS = ["original", "style", "layout", "style+layout"]

                    with gr.Accordion("IP-Adapter 1", open=False, visible=True):
                        image_ip1 = gr.Image(label="IP Image", type="filepath")
                        mask_ip1 = gr.Image(label="IP Mask", type="filepath")
                        model_ip1 = gr.Dropdown(value="plus_face", label="Model", choices=IP_MODELS)
                        mode_ip1 = gr.Dropdown(value="original", label="Mode", choices=MODE_IP_OPTIONS)
                        scale_ip1 = gr.Slider(minimum=0., maximum=2., step=0.01, value=0.7, label="Scale")
                    with gr.Accordion("IP-Adapter 2", open=False, visible=True):
                        image_ip2 = gr.Image(label="IP Image", type="filepath")
                        mask_ip2 = gr.Image(label="IP Mask (optional)", type="filepath")
                        model_ip2 = gr.Dropdown(value="base", label="Model", choices=IP_MODELS)
                        mode_ip2 = gr.Dropdown(value="style", label="Mode", choices=MODE_IP_OPTIONS)
                        scale_ip2 = gr.Slider(minimum=0., maximum=2., step=0.01, value=0.7, label="Scale")

                with gr.Accordion("ControlNet / Img2img / Inpaint", open=False, visible=True):
                    image_control = gr.Image(label="Image ControlNet/Inpaint/Img2img", type="filepath")
                    image_mask_gui = gr.Image(label="Image Mask", type="filepath")
                    strength_gui = gr.Slider(
                        minimum=0.01, maximum=1.0, step=0.01, value=0.55, label="Strength",
                        info="This option adjusts the level of changes for img2img and inpainting."
                    )
                    image_resolution_gui = gr.Slider(
                        minimum=64, maximum=2048, step=64, value=1024, label="Image Resolution",
                        info="The maximum proportional size of the generated image based on the uploaded image."
                    )
                    preprocessor_name_gui = gr.Dropdown(label="Preprocessor Name", choices=PREPROCESSOR_CONTROLNET["canny"])

                    def change_preprocessor_choices(task):
                        task = TASK_STABLEPY[task]
                        if task in PREPROCESSOR_CONTROLNET.keys():
                            choices_task = PREPROCESSOR_CONTROLNET[task]
                        else:
                            choices_task = PREPROCESSOR_CONTROLNET["canny"]
                        return gr.update(choices=choices_task, value=choices_task[0])

                    task_gui.change(
                        change_preprocessor_choices,
                        [task_gui],
                        [preprocessor_name_gui],
                    )
                    preprocess_resolution_gui = gr.Slider(minimum=64, maximum=2048, step=64, value=512, label="Preprocess Resolution")
                    low_threshold_gui = gr.Slider(minimum=1, maximum=255, step=1, value=100, label="Canny low threshold")
                    high_threshold_gui = gr.Slider(minimum=1, maximum=255, step=1, value=200, label="Canny high threshold")
                    value_threshold_gui = gr.Slider(minimum=1, maximum=2.0, step=0.01, value=0.1, label="Hough value threshold (MLSD)")
                    distance_threshold_gui = gr.Slider(minimum=1, maximum=20.0, step=0.01, value=0.1, label="Hough distance threshold (MLSD)")
                    control_net_output_scaling_gui = gr.Slider(minimum=0, maximum=5.0, step=0.1, value=1, label="ControlNet Output Scaling in UNet")
                    control_net_start_threshold_gui = gr.Slider(minimum=0, maximum=1, step=0.01, value=0, label="ControlNet Start Threshold (%)")
                    control_net_stop_threshold_gui = gr.Slider(minimum=0, maximum=1, step=0.01, value=1, label="ControlNet Stop Threshold (%)")

                with gr.Accordion("T2I adapter", open=False, visible=False):
                    t2i_adapter_preprocessor_gui = gr.Checkbox(value=True, label="T2i Adapter Preprocessor")
                    adapter_conditioning_scale_gui = gr.Slider(minimum=0, maximum=5., step=0.1, value=1, label="Adapter Conditioning Scale")
                    adapter_conditioning_factor_gui = gr.Slider(minimum=0, maximum=1., step=0.01, value=0.55, label="Adapter Conditioning Factor (%)")

                with gr.Accordion("Styles", open=False, visible=True):

                    try:
                        style_names_found = sd_gen.model.STYLE_NAMES
                    except Exception:
                        style_names_found = STYLE_NAMES

                    style_prompt_gui = gr.Dropdown(
                        style_names_found,
                        multiselect=True,
                        value=None,
                        label="Style Prompt",
                        interactive=True,
                    )
                    style_json_gui = gr.File(label="Style JSON File")
                    style_button = gr.Button("Load styles")

                    def load_json_style_file(json):
                        if not sd_gen.model:
                            gr.Info("First load the model")
                            return gr.update(value=None, choices=STYLE_NAMES)

                        sd_gen.model.load_style_file(json)
                        gr.Info(f"{len(sd_gen.model.STYLE_NAMES)} styles loaded")
                        return gr.update(value=None, choices=sd_gen.model.STYLE_NAMES)

                    style_button.click(load_json_style_file, [style_json_gui], [style_prompt_gui])                        

                with gr.Accordion("Textual inversion", open=False, visible=False):
                    active_textual_inversion_gui = gr.Checkbox(value=False, label="Active Textual Inversion in prompt")

                with gr.Accordion("Detailfix", open=False, visible=True):

                    # Adetailer Inpaint Only
                    adetailer_inpaint_only_gui = gr.Checkbox(label="Inpaint only", value=True)

                    # Adetailer Verbose
                    adetailer_verbose_gui = gr.Checkbox(label="Verbose", value=False)

                    # Adetailer Sampler
                    adetailer_sampler_gui = gr.Dropdown(label="Adetailer sampler:", choices=POST_PROCESSING_SAMPLER, value=POST_PROCESSING_SAMPLER[0])

                    with gr.Accordion("Detailfix A", open=False, visible=True):
                        # Adetailer A
                        adetailer_active_a_gui = gr.Checkbox(label="Enable Adetailer A", value=False)
                        prompt_ad_a_gui = gr.Textbox(label="Main prompt", placeholder="Main prompt will be use", lines=3)
                        negative_prompt_ad_a_gui = gr.Textbox(label="Negative prompt", placeholder="Main negative prompt will be use", lines=3)
                        strength_ad_a_gui = gr.Number(label="Strength:", value=0.35, step=0.01, minimum=0.01, maximum=1.0)
                        face_detector_ad_a_gui = gr.Checkbox(label="Face detector", value=True)
                        person_detector_ad_a_gui = gr.Checkbox(label="Person detector", value=False)
                        hand_detector_ad_a_gui = gr.Checkbox(label="Hand detector", value=False)
                        mask_dilation_a_gui = gr.Number(label="Mask dilation:", value=4, minimum=1)
                        mask_blur_a_gui = gr.Number(label="Mask blur:", value=4, minimum=1)
                        mask_padding_a_gui = gr.Number(label="Mask padding:", value=32, minimum=1)

                    with gr.Accordion("Detailfix B", open=False, visible=True):
                        # Adetailer B
                        adetailer_active_b_gui = gr.Checkbox(label="Enable Adetailer B", value=False)
                        prompt_ad_b_gui = gr.Textbox(label="Main prompt", placeholder="Main prompt will be use", lines=3)
                        negative_prompt_ad_b_gui = gr.Textbox(label="Negative prompt", placeholder="Main negative prompt will be use", lines=3)
                        strength_ad_b_gui = gr.Number(label="Strength:", value=0.35, step=0.01, minimum=0.01, maximum=1.0)
                        face_detector_ad_b_gui = gr.Checkbox(label="Face detector", value=False)
                        person_detector_ad_b_gui = gr.Checkbox(label="Person detector", value=True)
                        hand_detector_ad_b_gui = gr.Checkbox(label="Hand detector", value=False)
                        mask_dilation_b_gui = gr.Number(label="Mask dilation:", value=4, minimum=1)
                        mask_blur_b_gui = gr.Number(label="Mask blur:", value=4, minimum=1)
                        mask_padding_b_gui = gr.Number(label="Mask padding:", value=32, minimum=1)

                with gr.Accordion("Other settings", open=False, visible=True):
                    schedule_prediction_type_gui = gr.Dropdown(label="Discrete Sampling Type", choices=SCHEDULE_PREDICTION_TYPE_OPTIONS, value=SCHEDULE_PREDICTION_TYPE_OPTIONS[0])
                    save_generated_images_gui = gr.Checkbox(value=True, label="Create a download link for the images")
                    filename_pattern_gui = gr.Textbox(label="Filename pattern", value="model,seed", placeholder="model,seed,sampler,schedule_type,img_width,img_height,guidance_scale,num_steps,vae,prompt_section,neg_prompt_section", lines=1)
                    hires_before_adetailer_gui = gr.Checkbox(value=False, label="Hires Before Adetailer")
                    hires_after_adetailer_gui = gr.Checkbox(value=True, label="Hires After Adetailer")
                    generator_in_cpu_gui = gr.Checkbox(value=False, label="Generator in CPU")

                with gr.Accordion("More settings", open=False, visible=False):
                    loop_generation_gui = gr.Slider(minimum=1, value=1, label="Loop Generation")
                    retain_task_cache_gui = gr.Checkbox(value=False, label="Retain task model in cache")
                    leave_progress_bar_gui = gr.Checkbox(value=True, label="Leave Progress Bar")
                    disable_progress_bar_gui = gr.Checkbox(value=False, label="Disable Progress Bar")
                    display_images_gui = gr.Checkbox(value=False, label="Display Images")
                    image_previews_gui = gr.Checkbox(value=True, label="Image Previews")
                    image_storage_location_gui = gr.Textbox(value="./images", label="Image Storage Location")
                    retain_compel_previous_load_gui = gr.Checkbox(value=False, label="Retain Compel Previous Load")
                    retain_detailfix_model_previous_load_gui = gr.Checkbox(value=False, label="Retain Detailfix Model Previous Load")
                    retain_hires_model_previous_load_gui = gr.Checkbox(value=False, label="Retain Hires Model Previous Load")
                    xformers_memory_efficient_attention_gui = gr.Checkbox(value=False, label="Xformers Memory Efficient Attention")

        with gr.Accordion("Examples and help", open=False, visible=True):
            gr.Markdown(HELP_GUI)
            gr.Markdown(EXAMPLES_GUI_HELP)
            gr.Examples(
                examples=EXAMPLES_GUI,
                fn=sd_gen.generate_pipeline,
                inputs=[
                    prompt_gui,
                    neg_prompt_gui,
                    steps_gui,
                    cfg_gui,
                    seed_gui,
                    lora1_gui,
                    lora_scale_1_gui,
                    sampler_gui,
                    img_height_gui,
                    img_width_gui,
                    model_name_gui,
                    task_gui,
                    image_control,
                    image_resolution_gui,
                    strength_gui,
                    control_net_output_scaling_gui,
                    control_net_start_threshold_gui,
                    control_net_stop_threshold_gui,
                    prompt_syntax_gui,
                    upscaler_model_path_gui,
                    gpu_duration_gui,
                    load_lora_cpu_gui,
                ],
                outputs=[load_model_gui, result_images, actual_task_info],
                cache_examples=False,
            )
            gr.Markdown(RESOURCES)

    with gr.Tab("Inpaint mask maker", render=True):

        with gr.Row():
            with gr.Column(scale=2):
                image_base = gr.ImageEditor(
                    sources=["upload", "clipboard"],
                    # crop_size="1:1",
                    # enable crop (or disable it)
                    # transforms=["crop"],
                    brush=gr.Brush(
                      default_size="16",  # or leave it as 'auto'
                      color_mode="fixed",  # 'fixed' hides the user swatches and colorpicker, 'defaults' shows it
                      # default_color="black", # html names are supported
                      colors=[
                        "rgba(0, 0, 0, 1)",  # rgb(a)
                        "rgba(0, 0, 0, 0.1)",
                        "rgba(255, 255, 255, 0.1)",
                        # "hsl(360, 120, 120)" # in fact any valid colorstring
                      ]
                    ),
                    eraser=gr.Eraser(default_size="16")
                )
                invert_mask = gr.Checkbox(value=False, label="Invert mask")
                btn = gr.Button("Create mask")
            with gr.Column(scale=1):
                img_source = gr.Image(interactive=False)
                img_result = gr.Image(label="Mask image", show_label=True, interactive=False)
                btn_send = gr.Button("Send to the first tab")

            btn.click(create_mask_now, [image_base, invert_mask], [img_source, img_result])

            def send_img(img_source, img_result):
                return img_source, img_result
            btn_send.click(send_img, [img_source, img_result], [image_control, image_mask_gui])

    with gr.Tab("PNG Info"):

        with gr.Row():
            with gr.Column():
                image_metadata = gr.Image(label="Image with metadata", type="pil", sources=["upload"])

            with gr.Column():
                result_metadata = gr.Textbox(label="Metadata", show_label=True, show_copy_button=True, interactive=False, container=True, max_lines=99)

                image_metadata.change(
                    fn=extract_exif_data,
                    inputs=[image_metadata],
                    outputs=[result_metadata],
                )

    with gr.Tab("Upscaler"):

        with gr.Row():
            with gr.Column():
                image_up_tab = gr.Image(label="Image", type="pil", sources=["upload"])
                upscaler_tab = gr.Dropdown(label="Upscaler", choices=UPSCALER_KEYS[9:], value=UPSCALER_KEYS[11])
                upscaler_size_tab = gr.Slider(minimum=1., maximum=4., step=0.1, value=1.1, label="Upscale by")
                generate_button_up_tab = gr.Button(value="START UPSCALE", variant="primary")

            with gr.Column():
                result_up_tab = gr.Image(label="Result", type="pil", interactive=False, format="png")

                generate_button_up_tab.click(
                    fn=esrgan_upscale,
                    inputs=[image_up_tab, upscaler_tab, upscaler_size_tab],
                    outputs=[result_up_tab],
                )

    generate_button.click(
        fn=sd_gen.load_new_model,
        inputs=[
            model_name_gui,
            vae_model_gui,
            task_gui
        ],
        outputs=[load_model_gui],
        queue=True,
        show_progress="minimal",
    ).success(
        fn=sd_gen_generate_pipeline,  # fn=sd_gen.generate_pipeline,
        inputs=[
            prompt_gui,
            neg_prompt_gui,
            num_images_gui,
            steps_gui,
            cfg_gui,
            clip_skip_gui,
            seed_gui,
            lora1_gui,
            lora_scale_1_gui,
            lora2_gui,
            lora_scale_2_gui,
            lora3_gui,
            lora_scale_3_gui,
            lora4_gui,
            lora_scale_4_gui,
            lora5_gui,
            lora_scale_5_gui,
            sampler_gui,
            schedule_type_gui,
            schedule_prediction_type_gui,
            img_height_gui,
            img_width_gui,
            model_name_gui,
            vae_model_gui,
            task_gui,
            image_control,
            preprocessor_name_gui,
            preprocess_resolution_gui,
            image_resolution_gui,
            style_prompt_gui,
            style_json_gui,
            image_mask_gui,
            strength_gui,
            low_threshold_gui,
            high_threshold_gui,
            value_threshold_gui,
            distance_threshold_gui,
            control_net_output_scaling_gui,
            control_net_start_threshold_gui,
            control_net_stop_threshold_gui,
            active_textual_inversion_gui,
            prompt_syntax_gui,
            upscaler_model_path_gui,
            upscaler_increases_size_gui,
            esrgan_tile_gui,
            esrgan_tile_overlap_gui,
            hires_steps_gui,
            hires_denoising_strength_gui,
            hires_sampler_gui,
            hires_prompt_gui,
            hires_negative_prompt_gui,
            hires_before_adetailer_gui,
            hires_after_adetailer_gui,
            loop_generation_gui,
            leave_progress_bar_gui,
            disable_progress_bar_gui,
            image_previews_gui,
            display_images_gui,
            save_generated_images_gui,
            filename_pattern_gui,
            image_storage_location_gui,
            retain_compel_previous_load_gui,
            retain_detailfix_model_previous_load_gui,
            retain_hires_model_previous_load_gui,
            t2i_adapter_preprocessor_gui,
            adapter_conditioning_scale_gui,
            adapter_conditioning_factor_gui,
            xformers_memory_efficient_attention_gui,
            free_u_gui,
            generator_in_cpu_gui,
            adetailer_inpaint_only_gui,
            adetailer_verbose_gui,
            adetailer_sampler_gui,
            adetailer_active_a_gui,
            prompt_ad_a_gui,
            negative_prompt_ad_a_gui,
            strength_ad_a_gui,
            face_detector_ad_a_gui,
            person_detector_ad_a_gui,
            hand_detector_ad_a_gui,
            mask_dilation_a_gui,
            mask_blur_a_gui,
            mask_padding_a_gui,
            adetailer_active_b_gui,
            prompt_ad_b_gui,
            negative_prompt_ad_b_gui,
            strength_ad_b_gui,
            face_detector_ad_b_gui,
            person_detector_ad_b_gui,
            hand_detector_ad_b_gui,
            mask_dilation_b_gui,
            mask_blur_b_gui,
            mask_padding_b_gui,
            retain_task_cache_gui,
            image_ip1,
            mask_ip1,
            model_ip1,
            mode_ip1,
            scale_ip1,
            image_ip2,
            mask_ip2,
            model_ip2,
            mode_ip2,
            scale_ip2,
            pag_scale_gui,
            load_lora_cpu_gui,
            verbose_info_gui,
            gpu_duration_gui,
        ],
        outputs=[load_model_gui, result_images, actual_task_info],
        queue=True,
        show_progress="minimal",
    )

app.queue()

app.launch(
    show_error=True,
    debug=True,
    allowed_paths=["./images/"],
)