Spaces:
Running
Running
File size: 21,283 Bytes
99f75c3 1fa7834 99f75c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 |
from concurrent.futures import ThreadPoolExecutor
from pathlib import Path
from typing import Optional
import uuid
from lcm.lcm_scheduler import LCMScheduler
from lcm.lcm_pipeline import LatentConsistencyModelPipeline
from lcm.lcm_i2i_pipeline import LatentConsistencyModelImg2ImgPipeline, LCMSchedulerWithTimestamp
from diffusers.image_processor import PipelineImageInput
# import modules.scripts as scripts
# import modules.shared
# from modules import script_callbacks
import os
import random
import time
import numpy as np
import gradio as gr
from PIL import Image, PngImagePlugin
import torch
scheduler = LCMScheduler.from_pretrained(
"SimianLuo/LCM_Dreamshaper_v7", subfolder="scheduler")
pipe = LatentConsistencyModelPipeline.from_pretrained(
"SimianLuo/LCM_Dreamshaper_v7", scheduler = scheduler, safety_checker = None)
DESCRIPTION = '''# Latent Consistency Model
Running [LCM_Dreamshaper_v7](https://huggingface.co/SimianLuo/LCM_Dreamshaper_v7) | [Project Page](https://latent-consistency-models.github.io) | [Extension Page](https://github.com/0xbitches/sd-webui-lcm)
'''
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "768"))
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def save_image(img, metadata: dict):
save_dir = './outputs/LCM-txt2img/'
Path(save_dir).mkdir(exist_ok=True, parents=True)
seed = metadata["seed"]
unique_id = uuid.uuid4()
filename = save_dir + f"{unique_id}-{seed}" + ".png"
meta_tuples = [(k, str(v)) for k, v in metadata.items()]
png_info = PngImagePlugin.PngInfo()
for k, v in meta_tuples:
png_info.add_text(k, v)
img.save(filename, pnginfo=png_info)
return filename
def save_images(image_array, metadata: dict):
paths = []
with ThreadPoolExecutor() as executor:
paths = list(executor.map(save_image, image_array,
[metadata]*len(image_array)))
return paths
def generate(
prompt: str,
seed: int = 0,
width: int = 512,
height: int = 512,
guidance_scale: float = 8.0,
num_inference_steps: int = 4,
num_images: int = 4,
randomize_seed: bool = False,
use_fp16: bool = True,
use_torch_compile: bool = False,
use_cpu: bool = False,
progress=gr.Progress(track_tqdm=True)
) -> Image.Image:
seed = randomize_seed_fn(seed, randomize_seed)
torch.manual_seed(seed)
selected_device = 'cuda'
if use_cpu:
selected_device = "cpu"
if use_fp16:
use_fp16 = False
print("LCM warning: running on CPU, overrode FP16 with FP32")
global pipe, scheduler
pipe = LatentConsistencyModelPipeline(
vae= pipe.vae,
text_encoder = pipe.text_encoder,
tokenizer = pipe.tokenizer,
unet = pipe.unet,
scheduler = scheduler,
safety_checker = pipe.safety_checker,
feature_extractor = pipe.feature_extractor,
)
# pipe = LatentConsistencyModelPipeline.from_pretrained(
# "SimianLuo/LCM_Dreamshaper_v7", scheduler = scheduler, safety_checker = None)
if use_fp16:
pipe.to(torch_device=selected_device, torch_dtype=torch.float16)
else:
pipe.to(torch_device=selected_device, torch_dtype=torch.float32)
# Windows does not support torch.compile for now
if os.name != 'nt' and use_torch_compile:
pipe.unet = torch.compile(pipe.unet, mode='max-autotune')
start_time = time.time()
result = pipe(
prompt=prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
num_images_per_prompt=num_images,
original_inference_steps=50,
output_type="pil",
device = selected_device
).images
paths = save_images(result, metadata={"prompt": prompt, "seed": seed, "width": width,
"height": height, "guidance_scale": guidance_scale, "num_inference_steps": num_inference_steps})
elapsed_time = time.time() - start_time
print("LCM inference time: ", elapsed_time, "seconds")
return paths, seed
def generate_i2i(
prompt: str,
image: PipelineImageInput = None,
strength: float = 0.8,
seed: int = 0,
guidance_scale: float = 8.0,
num_inference_steps: int = 4,
num_images: int = 4,
randomize_seed: bool = False,
use_fp16: bool = True,
use_torch_compile: bool = False,
use_cpu: bool = False,
progress=gr.Progress(track_tqdm=True),
width: Optional[int] = 512,
height: Optional[int] = 512,
) -> Image.Image:
seed = randomize_seed_fn(seed, randomize_seed)
torch.manual_seed(seed)
selected_device = 'cuda'
if use_cpu:
selected_device = "cpu"
if use_fp16:
use_fp16 = False
print("LCM warning: running on CPU, overrode FP16 with FP32")
global pipe, scheduler
pipe = LatentConsistencyModelImg2ImgPipeline(
vae= pipe.vae,
text_encoder = pipe.text_encoder,
tokenizer = pipe.tokenizer,
unet = pipe.unet,
scheduler = None, #scheduler,
safety_checker = pipe.safety_checker,
feature_extractor = pipe.feature_extractor,
requires_safety_checker = False,
)
# pipe = LatentConsistencyModelImg2ImgPipeline.from_pretrained(
# "SimianLuo/LCM_Dreamshaper_v7", safety_checker = None)
if use_fp16:
pipe.to(torch_device=selected_device, torch_dtype=torch.float16)
else:
pipe.to(torch_device=selected_device, torch_dtype=torch.float32)
# Windows does not support torch.compile for now
if os.name != 'nt' and use_torch_compile:
pipe.unet = torch.compile(pipe.unet, mode='max-autotune')
width, height = image.size
start_time = time.time()
result = pipe(
prompt=prompt,
image=image,
strength=strength,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
num_images_per_prompt=num_images,
original_inference_steps=50,
output_type="pil",
device = selected_device
).images
paths = save_images(result, metadata={"prompt": prompt, "seed": seed, "width": width,
"height": height, "guidance_scale": guidance_scale, "num_inference_steps": num_inference_steps})
elapsed_time = time.time() - start_time
print("LCM inference time: ", elapsed_time, "seconds")
return paths, seed
import cv2
def video_to_frames(video_path):
# Open the video file
cap = cv2.VideoCapture(video_path)
# Check if the video opened successfully
if not cap.isOpened():
print("Error: LCM Could not open video.")
return
# Read frames from the video
pil_images = []
while True:
ret, frame = cap.read()
if not ret:
break
# Convert BGR to RGB (OpenCV uses BGR by default)
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# Convert numpy array to PIL Image
pil_image = Image.fromarray(rgb_frame)
# Append the PIL Image to the list
pil_images.append(pil_image)
# Release the video capture object
cap.release()
return pil_images
def frames_to_video(pil_images, output_path, fps):
if not pil_images:
print("Error: No images to convert.")
return
img_array = []
for pil_image in pil_images:
img_array.append(np.array(pil_image))
height, width, layers = img_array[0].shape
size = (width, height)
out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, size)
for i in range(len(img_array)):
out.write(cv2.cvtColor(img_array[i], cv2.COLOR_RGB2BGR))
out.release()
def generate_v2v(
prompt: str,
video: any = None,
strength: float = 0.8,
seed: int = 0,
guidance_scale: float = 8.0,
num_inference_steps: int = 4,
randomize_seed: bool = False,
use_fp16: bool = True,
use_torch_compile: bool = False,
use_cpu: bool = False,
fps: int = 10,
save_frames: bool = False,
# progress=gr.Progress(track_tqdm=True),
width: Optional[int] = 512,
height: Optional[int] = 512,
num_images: Optional[int] = 1,
) -> Image.Image:
seed = randomize_seed_fn(seed, randomize_seed)
torch.manual_seed(seed)
selected_device = 'cuda'
if use_cpu:
selected_device = "cpu"
if use_fp16:
use_fp16 = False
print("LCM warning: running on CPU, overrode FP16 with FP32")
global pipe, scheduler
pipe = LatentConsistencyModelImg2ImgPipeline(
vae= pipe.vae,
text_encoder = pipe.text_encoder,
tokenizer = pipe.tokenizer,
unet = pipe.unet,
scheduler = None,
safety_checker = pipe.safety_checker,
feature_extractor = pipe.feature_extractor,
requires_safety_checker = False,
)
# pipe = LatentConsistencyModelImg2ImgPipeline.from_pretrained(
# "SimianLuo/LCM_Dreamshaper_v7", safety_checker = None)
if use_fp16:
pipe.to(torch_device=selected_device, torch_dtype=torch.float16)
else:
pipe.to(torch_device=selected_device, torch_dtype=torch.float32)
# Windows does not support torch.compile for now
if os.name != 'nt' and use_torch_compile:
pipe.unet = torch.compile(pipe.unet, mode='max-autotune')
frames = video_to_frames(video)
if frames is None:
print("Error: LCM could not convert video.")
return
width, height = frames[0].size
start_time = time.time()
results = []
for frame in frames:
result = pipe(
prompt=prompt,
image=frame,
strength=strength,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
num_images_per_prompt=1,
original_inference_steps=50,
output_type="pil",
device = selected_device
).images
if save_frames:
paths = save_images(result, metadata={"prompt": prompt, "seed": seed, "width": width,
"height": height, "guidance_scale": guidance_scale, "num_inference_steps": num_inference_steps})
results.extend(result)
elapsed_time = time.time() - start_time
print("LCM vid2vid inference complete! Processing", len(frames), "frames took", elapsed_time, "seconds")
save_dir = './outputs/LCM-vid2vid/'
Path(save_dir).mkdir(exist_ok=True, parents=True)
unique_id = uuid.uuid4()
_, input_ext = os.path.splitext(video)
output_path = save_dir + f"{unique_id}-{seed}" + f"{input_ext}"
frames_to_video(results, output_path, fps)
return output_path
examples = [
"portrait photo of a girl, photograph, highly detailed face, depth of field, moody light, golden hour, style by Dan Winters, Russell James, Steve McCurry, centered, extremely detailed, Nikon D850, award winning photography",
"Self-portrait oil painting, a beautiful cyborg with golden hair, 8k",
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"A photo of beautiful mountain with realistic sunset and blue lake, highly detailed, masterpiece",
]
with gr.Blocks() as lcm:
with gr.Tab("LCM txt2img"):
gr.Markdown("Latent Consistency Models: Synthesizing High-Resolution Images with Few-step Inference")
gr.Markdown("Try the guide on Colab's free tier [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/R3gm/InsightSolver-Colab/blob/main/Latent_Consistency_Models.ipynb)")
with gr.Row():
prompt = gr.Textbox(label="Prompt",
show_label=False,
lines=3,
placeholder="Prompt",
elem_classes=["prompt"])
run_button = gr.Button("Run", scale=0)
with gr.Row():
result = gr.Gallery(
label="Generated images", show_label=False, elem_id="gallery", grid=[2], preview=True
)
with gr.Accordion("Advanced options", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
randomize=True
)
randomize_seed = gr.Checkbox(
label="Randomize seed across runs", value=True)
use_fp16 = gr.Checkbox(
label="Run LCM in fp16 (for lower VRAM)", value=False)
use_torch_compile = gr.Checkbox(
label="Run LCM with torch.compile (currently not supported on Windows)", value=False)
use_cpu = gr.Checkbox(label="Run LCM on CPU", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale for base",
minimum=2,
maximum=14,
step=0.1,
value=8.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps for base",
minimum=1,
maximum=8,
step=1,
value=4,
)
with gr.Row():
num_images = gr.Slider(
label="Number of images (batch count)",
minimum=1,
maximum=int(os.getenv("MAX_NUM_IMAGES")),
step=1,
value=1,
)
gr.Examples(
examples=examples,
inputs=prompt,
outputs=result,
fn=generate
)
run_button.click(
fn=generate,
inputs=[
prompt,
seed,
width,
height,
guidance_scale,
num_inference_steps,
num_images,
randomize_seed,
use_fp16,
use_torch_compile,
use_cpu
],
outputs=[result, seed],
)
with gr.Tab("LCM img2img"):
with gr.Row():
prompt = gr.Textbox(label="Prompt",
show_label=False,
lines=3,
placeholder="Prompt",
elem_classes=["prompt"])
run_i2i_button = gr.Button("Run", scale=0)
with gr.Row():
image_input = gr.Image(label="Upload your Image", type="pil")
result = gr.Gallery(
label="Generated images",
show_label=False,
elem_id="gallery",
preview=True
)
with gr.Accordion("Advanced options", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
randomize=True
)
randomize_seed = gr.Checkbox(
label="Randomize seed across runs", value=True)
use_fp16 = gr.Checkbox(
label="Run LCM in fp16 (for lower VRAM)", value=False)
use_torch_compile = gr.Checkbox(
label="Run LCM with torch.compile (currently not supported on Windows)", value=False)
use_cpu = gr.Checkbox(label="Run LCM on CPU", value=True)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale for base",
minimum=2,
maximum=14,
step=0.1,
value=8.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps for base",
minimum=1,
maximum=8,
step=1,
value=4,
)
with gr.Row():
num_images = gr.Slider(
label="Number of images (batch count)",
minimum=1,
maximum=int(os.getenv("MAX_NUM_IMAGES")),
step=1,
value=1,
)
strength = gr.Slider(
label="Prompt Strength",
minimum=0.1,
maximum=1.0,
step=0.1,
value=0.5,
)
run_i2i_button.click(
fn=generate_i2i,
inputs=[
prompt,
image_input,
strength,
seed,
guidance_scale,
num_inference_steps,
num_images,
randomize_seed,
use_fp16,
use_torch_compile,
use_cpu
],
outputs=[result, seed],
)
with gr.Tab("LCM vid2vid"):
show_v2v = False if os.getenv("SHOW_VID2VID") == "NO" else True
gr.Markdown("Not recommended for use with CPU. Duplicate the space and modify SHOW_VID2VID to enable it. 🚫💻")
with gr.Tabs(visible=show_v2v) as tabs:
#with gr.Tab("", visible=show_v2v):
with gr.Row():
prompt = gr.Textbox(label="Prompt",
show_label=False,
lines=3,
placeholder="Prompt",
elem_classes=["prompt"])
run_v2v_button = gr.Button("Run", scale=0)
with gr.Row():
video_input = gr.Video(label="Source Video")
video_output = gr.Video(label="Generated Video")
with gr.Accordion("Advanced options", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
randomize=True
)
randomize_seed = gr.Checkbox(
label="Randomize seed across runs", value=True)
use_fp16 = gr.Checkbox(
label="Run LCM in fp16 (for lower VRAM)", value=False)
use_torch_compile = gr.Checkbox(
label="Run LCM with torch.compile (currently not supported on Windows)", value=False)
use_cpu = gr.Checkbox(label="Run LCM on CPU", value=True)
save_frames = gr.Checkbox(label="Save intermediate frames", value=False)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale for base",
minimum=2,
maximum=14,
step=0.1,
value=8.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps for base",
minimum=1,
maximum=8,
step=1,
value=4,
)
with gr.Row():
fps = gr.Slider(
label="Output FPS",
minimum=1,
maximum=200,
step=1,
value=10,
)
strength = gr.Slider(
label="Prompt Strength",
minimum=0.1,
maximum=1.0,
step=0.05,
value=0.5,
)
run_v2v_button.click(
fn=generate_v2v,
inputs=[
prompt,
video_input,
strength,
seed,
guidance_scale,
num_inference_steps,
randomize_seed,
use_fp16,
use_torch_compile,
use_cpu,
fps,
save_frames
],
outputs=video_output,
)
if __name__ == "__main__":
lcm.queue().launch() |