#!/usr/bin/env python from __future__ import annotations import os import random import time import gradio as gr import numpy as np import PIL.Image import torch from diffusers import DiffusionPipeline import torch import os import torch from tqdm import tqdm from safetensors.torch import load_file from huggingface_hub import hf_hub_download from concurrent.futures import ThreadPoolExecutor import uuid import cv2 DESCRIPTION = '''# Latent Consistency Model Distilled from [Dreamshaper v7](https://huggingface.co/Lykon/dreamshaper-7) fine-tune of [Stable Diffusion v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5). [Project page](https://latent-consistency-models.github.io) ''' if not torch.cuda.is_available(): DESCRIPTION += "\n
Running on CPU 🥶 This demo does not work on CPU.
" MAX_SEED = np.iinfo(np.int32).max CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1" MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "768")) USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1" DTYPE = torch.float32 # torch.float16 works as well, but pictures seem to be a bit worse pipe = DiffusionPipeline.from_pretrained("SimianLuo/LCM_Dreamshaper_v7", custom_pipeline="latent_consistency_txt2img", custom_revision="main") pipe.to(torch_device="cuda", torch_dtype=DTYPE) def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: if randomize_seed: seed = random.randint(0, MAX_SEED) return seed def save_image(img): unique_name = str(uuid.uuid4()) + '.png' img.save(unique_name) return unique_name def save_images(image_array): paths = [] with ThreadPoolExecutor() as executor: paths = list(executor.map(save_image, image_array)) return paths def generate( prompt: str, seed: int = 0, width: int = 512, height: int = 512, guidance_scale: float = 8.0, num_inference_steps: int = 4, num_images: int = 4, randomize_seed: bool = False, progress = gr.Progress(track_tqdm=True) ) -> PIL.Image.Image: seed = randomize_seed_fn(seed, randomize_seed) torch.manual_seed(seed) start_time = time.time() result = pipe( prompt=prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, num_images_per_prompt=num_images, lcm_origin_steps=50, output_type="pil", ).images paths = save_images(result) print(time.time() - start_time) return paths, seed examples = [ "portrait photo of a girl, photograph, highly detailed face, depth of field, moody light, golden hour, style by Dan Winters, Russell James, Steve McCurry, centered, extremely detailed, Nikon D850, award winning photography", "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k", "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "A photo of beautiful mountain with realistic sunset and blue lake, highly detailed, masterpiece", ] with gr.Blocks(css="style.css") as demo: gr.Markdown(DESCRIPTION) gr.DuplicateButton( value="Duplicate Space for private use", elem_id="duplicate-button", visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1", ) with gr.Group(): with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Gallery( label="Generated images", show_label=False, elem_id="gallery", grid=[2] ) with gr.Accordion("Advanced options", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True ) randomize_seed = gr.Checkbox(label="Randomize seed across runs", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale for base", minimum=2, maximum=14, step=0.1, value=8.0, ) num_inference_steps = gr.Slider( label="Number of inference steps for base", minimum=1, maximum=8, step=1, value=4, ) with gr.Row(): num_images = gr.Slider( label="Number of images", minimum=1, maximum=8, step=1, value=4, visible=False, ) gr.Examples( examples=examples, inputs=prompt, outputs=result, fn=generate, cache_examples=CACHE_EXAMPLES, ) gr.on( triggers=[ prompt.submit, run_button.click, ], fn=generate, inputs=[ prompt, seed, width, height, guidance_scale, num_inference_steps, num_images, randomize_seed ], outputs=[result, seed], api_name="run", ) if __name__ == "__main__": demo.queue(api_open=False) # demo.queue(max_size=20).launch() demo.launch()