LlamaVerse / app.py
r3gm's picture
Upload 6 files
7455667 verified
raw
history blame
10.8 kB
import spaces
import gradio as gr
from huggingface_hub import hf_hub_download
from llama_cpp_cuda_tensorcores import Llama
REPO_ID = "MaziyarPanahi/Meta-Llama-3-70B-Instruct-GGUF"
MODEL_NAME = "Meta-Llama-3-70B-Instruct.Q3_K_L.gguf"
MAX_CONTEXT_LENGTH = 8192
CUDA = True
SYSTEM_PROMPT = "You are a helpful, smart, kind, and efficient AI assistant. You always fulfill the user's requests to the best of your ability."
TOKEN_STOP = ["<|eot_id|>"]
SYS_MSG = "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\nSYSTEM_PROMPT<|eot_id|>\n"
USER_PROMPT = (
"<|start_header_id|>user<|end_header_id|>\n\nUSER_PROMPT<|eot_id|>\n"
)
ASSIS_PROMPT = "<|start_header_id|>assistant<|end_header_id|>\n\n"
END_ASSIS_PREVIOUS_RESPONSE = "<|eot_id|>\n"
TASK_PROMPT = {
"Assistant": SYSTEM_PROMPT,
"Translate": "You are an expert translator. Translate the following text into English.",
"Summarization": "Summarizing information is my specialty. Let me know what you'd like summarized.",
"Grammar correction": "Grammar is my forte! Feel free to share the text you'd like me to proofread and correct.",
"Stable diffusion prompt generator": "You are a stable diffusion prompt generator. Break down the user's text and create a more elaborate prompt.",
"Play Trivia": "Engage the user in a trivia game on various topics.",
"Share Fun Facts": "Share interesting and fun facts on various topics.",
"Explain code": "You are an expert programmer guiding someone through a piece of code step by step, explaining each line and its function in detail.",
"Paraphrase Master": "You have the knack for transforming complex or verbose text into simpler, clearer language while retaining the original meaning and essence.",
"Recommend Movies": "Recommend movies based on the user's preferences.",
"Offer Motivational Quotes": "Offer motivational quotes to inspire the user.",
"Recommend Books": "Recommend books based on the user's favorite genres or interests.",
"Philosophical discussion": "Engage the user in a philosophical discussion",
"Music recommendation": "Tune time! What kind of music are you in the mood for? I'll find the perfect song for you.",
"Generate a Joke": "Generate a witty joke suitable for a stand-up comedy routine.",
"Roleplay as a Detective": "Roleplay as a detective interrogating a suspect in a murder case.",
"Act as a News Reporter": "Act as a news reporter covering breaking news about an alien invasion.",
"Play as a Space Explorer": "Play as a space explorer encountering a new alien civilization.",
"Be a Medieval Knight": "Imagine yourself as a medieval knight embarking on a quest to rescue a princess.",
"Act as a Superhero": "Act as a superhero saving a city from a supervillain's evil plot.",
"Play as a Pirate Captain": "Play as a pirate captain searching for buried treasure on a remote island.",
"Be a Famous Celebrity": "Imagine yourself as a famous celebrity attending a glamorous red-carpet event.",
"Design a New Invention": "Imagine you're an inventor tasked with designing a revolutionary new invention that will change the world.",
"Act as a Time Traveler": "You've just discovered time travel! Describe your adventures as you journey through different eras.",
"Play as a Magical Girl": "You are a magical girl with extraordinary powers, battling dark forces to protect your city and friends.",
"Act as a Shonen Protagonist": "You are a determined and spirited shonen protagonist on a quest for strength, friendship, and victory.",
"Roleplay as a Tsundere Character": "You are a tsundere character, initially cold and aloof but gradually warming up to others through unexpected acts of kindness.",
}
css = ".gradio-container {background-image: url('file=./assets/background.png'); background-size: cover; background-position: center; background-repeat: no-repeat;}"
class ChatLLM:
def __init__(self, config_model):
self.llm = None
self.config_model = config_model
# self.load_cpp_model()
def load_cpp_model(self):
self.llm = Llama(**config_model)
def apply_chat_template(
self,
history,
system_message,
):
history = history or []
messages = SYS_MSG.replace("SYSTEM_PROMPT", system_message.strip())
for msg in history:
messages += (
USER_PROMPT.replace("USER_PROMPT", msg[0]) + ASSIS_PROMPT + msg[1]
)
messages += END_ASSIS_PREVIOUS_RESPONSE if msg[1] else ""
print(messages)
# messages = messages[:-1]
return messages
@spaces.GPU(duration=120)
def response(
self,
history,
system_message,
max_tokens,
temperature,
top_p,
top_k,
repeat_penalty,
):
messages = self.apply_chat_template(history, system_message)
history[-1][1] = ""
if not self.llm:
print("Loading model")
self.load_cpp_model()
for output in self.llm(
messages,
echo=False,
stream=True,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
top_k=top_k,
repeat_penalty=repeat_penalty,
stop=TOKEN_STOP,
):
answer = output["choices"][0]["text"]
history[-1][1] += answer
# stream the response
yield history, history
def user(message, history):
history = history or []
# Append the user's message to the conversation history
history.append([message, ""])
return "", history
def clear_chat(chat_history_state, chat_message):
chat_history_state = []
chat_message = ""
return chat_history_state, chat_message
def gui(llm_chat):
with gr.Blocks(theme="NoCrypt/miku", css=css) as app:
gr.Markdown("# Llama 3 70B Instruct GGUF")
gr.Markdown(
f"""
### This demo utilizes the repository ID {REPO_ID} with the model {MODEL_NAME}, powered by the LLaMA.cpp backend.
"""
)
with gr.Row():
with gr.Column(scale=2):
chatbot = gr.Chatbot(
label="Chat",
height=700,
avatar_images=(
"assets/avatar_user.jpeg",
"assets/avatar_llama.jpeg",
),
)
with gr.Column(scale=1):
with gr.Row():
message = gr.Textbox(
label="Message",
placeholder="Ask me anything.",
lines=3,
)
with gr.Row():
submit = gr.Button(value="Send message", variant="primary")
clear = gr.Button(value="New chat", variant="primary")
stop = gr.Button(value="Stop", variant="secondary")
with gr.Accordion("Contextual Prompt Editor"):
default_task = "Assistant"
task_prompts_gui = gr.Dropdown(
TASK_PROMPT,
value=default_task,
label="Prompt selector",
visible=True,
interactive=True,
)
system_msg = gr.Textbox(
TASK_PROMPT[default_task],
label="System Message",
placeholder="system prompt",
lines=4,
)
def task_selector(choice):
return gr.update(value=TASK_PROMPT[choice])
task_prompts_gui.change(
task_selector,
[task_prompts_gui],
[system_msg],
)
with gr.Accordion("Advanced settings", open=False):
with gr.Column():
max_tokens = gr.Slider(
20, 4096, label="Max Tokens", step=20, value=400
)
temperature = gr.Slider(
0.2, 2.0, label="Temperature", step=0.1, value=0.8
)
top_p = gr.Slider(
0.0, 1.0, label="Top P", step=0.05, value=0.95
)
top_k = gr.Slider(
0, 100, label="Top K", step=1, value=40
)
repeat_penalty = gr.Slider(
0.0,
2.0,
label="Repetition Penalty",
step=0.1,
value=1.1,
)
chat_history_state = gr.State()
clear.click(
clear_chat,
inputs=[chat_history_state, message],
outputs=[chat_history_state, message],
queue=False,
)
clear.click(lambda: None, None, chatbot, queue=False)
submit_click_event = submit.click(
fn=user,
inputs=[message, chat_history_state],
outputs=[message, chat_history_state],
queue=True,
).then(
fn=llm_chat.response,
inputs=[
chat_history_state,
system_msg,
max_tokens,
temperature,
top_p,
top_k,
repeat_penalty,
],
outputs=[chatbot, chat_history_state],
queue=True,
)
stop.click(
fn=None,
inputs=None,
outputs=None,
cancels=[submit_click_event],
queue=False,
)
return app
if __name__ == "__main__":
model_path = hf_hub_download(repo_id=REPO_ID, filename=MODEL_NAME)
config_model = {
"model_path": model_path,
"n_ctx": MAX_CONTEXT_LENGTH,
"n_gpu_layers": -1 if CUDA else 0,
}
llm_chat = ChatLLM(config_model)
app = gui(llm_chat)
app.queue(default_concurrency_limit=40)
app.launch(
max_threads=40,
share=False,
show_error=True,
quiet=False,
debug=True,
allowed_paths=["./assets/"],
)