Spaces:
Running
on
Zero
Running
on
Zero
""" | |
对源特征进行检索 | |
""" | |
import os | |
import logging | |
logger = logging.getLogger(__name__) | |
import parselmouth | |
import torch | |
os.environ["CUDA_VISIBLE_DEVICES"] = "0" | |
# import torchcrepe | |
from time import time as ttime | |
# import pyworld | |
import librosa | |
import numpy as np | |
import soundfile as sf | |
import torch.nn.functional as F | |
from fairseq import checkpoint_utils | |
# from models import SynthesizerTrn256#hifigan_nonsf | |
# from lib.infer_pack.models import SynthesizerTrn256NSF as SynthesizerTrn256#hifigan_nsf | |
from infer.lib.infer_pack.models import ( | |
SynthesizerTrnMs256NSFsid as SynthesizerTrn256, | |
) # hifigan_nsf | |
from scipy.io import wavfile | |
# from lib.infer_pack.models import SynthesizerTrnMs256NSFsid_sim as SynthesizerTrn256#hifigan_nsf | |
# from models import SynthesizerTrn256NSFsim as SynthesizerTrn256#hifigan_nsf | |
# from models import SynthesizerTrn256NSFsimFlow as SynthesizerTrn256#hifigan_nsf | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model_path = r"E:\codes\py39\vits_vc_gpu_train\assets\hubert\hubert_base.pt" # | |
logger.info("Load model(s) from {}".format(model_path)) | |
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task( | |
[model_path], | |
suffix="", | |
) | |
model = models[0] | |
model = model.to(device) | |
model = model.half() | |
model.eval() | |
# net_g = SynthesizerTrn256(1025,32,192,192,768,2,6,3,0.1,"1", [3,7,11],[[1,3,5], [1,3,5], [1,3,5]],[10,10,2,2],512,[16,16,4,4],183,256,is_half=True)#hifigan#512#256 | |
# net_g = SynthesizerTrn256(1025,32,192,192,768,2,6,3,0.1,"1", [3,7,11],[[1,3,5], [1,3,5], [1,3,5]],[10,10,2,2],512,[16,16,4,4],109,256,is_half=True)#hifigan#512#256 | |
net_g = SynthesizerTrn256( | |
1025, | |
32, | |
192, | |
192, | |
768, | |
2, | |
6, | |
3, | |
0, | |
"1", | |
[3, 7, 11], | |
[[1, 3, 5], [1, 3, 5], [1, 3, 5]], | |
[10, 10, 2, 2], | |
512, | |
[16, 16, 4, 4], | |
183, | |
256, | |
is_half=True, | |
) # hifigan#512#256#no_dropout | |
# net_g = SynthesizerTrn256(1025,32,192,192,768,2,3,3,0.1,"1", [3,7,11],[[1,3,5], [1,3,5], [1,3,5]],[10,10,2,2],512,[16,16,4,4],0)#ts3 | |
# net_g = SynthesizerTrn256(1025,32,192,192,768,2,6,3,0.1,"1", [3,7,11],[[1,3,5], [1,3,5], [1,3,5]],[10,10,2],512,[16,16,4],0)#hifigan-ps-sr | |
# | |
# net_g = SynthesizerTrn(1025, 32, 192, 192, 768, 2, 6, 3, 0.1, "1", [3, 7, 11], [[1, 3, 5], [1, 3, 5], [1, 3, 5]], [5,5], 512, [15,15], 0)#ms | |
# net_g = SynthesizerTrn(1025, 32, 192, 192, 768, 2, 6, 3, 0.1, "1", [3, 7, 11], [[1, 3, 5], [1, 3, 5], [1, 3, 5]], [10,10], 512, [16,16], 0)#idwt2 | |
# weights=torch.load("infer/ft-mi_1k-noD.pt") | |
# weights=torch.load("infer/ft-mi-freeze-vocoder-flow-enc_q_1k.pt") | |
# weights=torch.load("infer/ft-mi-freeze-vocoder_true_1k.pt") | |
# weights=torch.load("infer/ft-mi-sim1k.pt") | |
weights = torch.load("infer/ft-mi-no_opt-no_dropout.pt") | |
logger.debug(net_g.load_state_dict(weights, strict=True)) | |
net_g.eval().to(device) | |
net_g.half() | |
def get_f0(x, p_len, f0_up_key=0): | |
time_step = 160 / 16000 * 1000 | |
f0_min = 50 | |
f0_max = 1100 | |
f0_mel_min = 1127 * np.log(1 + f0_min / 700) | |
f0_mel_max = 1127 * np.log(1 + f0_max / 700) | |
f0 = ( | |
parselmouth.Sound(x, 16000) | |
.to_pitch_ac( | |
time_step=time_step / 1000, | |
voicing_threshold=0.6, | |
pitch_floor=f0_min, | |
pitch_ceiling=f0_max, | |
) | |
.selected_array["frequency"] | |
) | |
pad_size = (p_len - len(f0) + 1) // 2 | |
if pad_size > 0 or p_len - len(f0) - pad_size > 0: | |
f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant") | |
f0 *= pow(2, f0_up_key / 12) | |
f0bak = f0.copy() | |
f0_mel = 1127 * np.log(1 + f0 / 700) | |
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / ( | |
f0_mel_max - f0_mel_min | |
) + 1 | |
f0_mel[f0_mel <= 1] = 1 | |
f0_mel[f0_mel > 255] = 255 | |
# f0_mel[f0_mel > 188] = 188 | |
f0_coarse = np.rint(f0_mel).astype(np.int32) | |
return f0_coarse, f0bak | |
import faiss | |
index = faiss.read_index("infer/added_IVF512_Flat_mi_baseline_src_feat.index") | |
big_npy = np.load("infer/big_src_feature_mi.npy") | |
ta0 = ta1 = ta2 = 0 | |
for idx, name in enumerate( | |
[ | |
"冬之花clip1.wav", | |
] | |
): ## | |
wav_path = "todo-songs/%s" % name # | |
f0_up_key = -2 # | |
audio, sampling_rate = sf.read(wav_path) | |
if len(audio.shape) > 1: | |
audio = librosa.to_mono(audio.transpose(1, 0)) | |
if sampling_rate != 16000: | |
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000) | |
feats = torch.from_numpy(audio).float() | |
if feats.dim() == 2: # double channels | |
feats = feats.mean(-1) | |
assert feats.dim() == 1, feats.dim() | |
feats = feats.view(1, -1) | |
padding_mask = torch.BoolTensor(feats.shape).fill_(False) | |
inputs = { | |
"source": feats.half().to(device), | |
"padding_mask": padding_mask.to(device), | |
"output_layer": 9, # layer 9 | |
} | |
if torch.cuda.is_available(): | |
torch.cuda.synchronize() | |
t0 = ttime() | |
with torch.no_grad(): | |
logits = model.extract_features(**inputs) | |
feats = model.final_proj(logits[0]) | |
####索引优化 | |
npy = feats[0].cpu().numpy().astype("float32") | |
D, I = index.search(npy, 1) | |
feats = ( | |
torch.from_numpy(big_npy[I.squeeze()].astype("float16")).unsqueeze(0).to(device) | |
) | |
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1) | |
if torch.cuda.is_available(): | |
torch.cuda.synchronize() | |
t1 = ttime() | |
# p_len = min(feats.shape[1],10000,pitch.shape[0])#太大了爆显存 | |
p_len = min(feats.shape[1], 10000) # | |
pitch, pitchf = get_f0(audio, p_len, f0_up_key) | |
p_len = min(feats.shape[1], 10000, pitch.shape[0]) # 太大了爆显存 | |
if torch.cuda.is_available(): | |
torch.cuda.synchronize() | |
t2 = ttime() | |
feats = feats[:, :p_len, :] | |
pitch = pitch[:p_len] | |
pitchf = pitchf[:p_len] | |
p_len = torch.LongTensor([p_len]).to(device) | |
pitch = torch.LongTensor(pitch).unsqueeze(0).to(device) | |
sid = torch.LongTensor([0]).to(device) | |
pitchf = torch.FloatTensor(pitchf).unsqueeze(0).to(device) | |
with torch.no_grad(): | |
audio = ( | |
net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0] | |
.data.cpu() | |
.float() | |
.numpy() | |
) # nsf | |
if torch.cuda.is_available(): | |
torch.cuda.synchronize() | |
t3 = ttime() | |
ta0 += t1 - t0 | |
ta1 += t2 - t1 | |
ta2 += t3 - t2 | |
# wavfile.write("ft-mi_1k-index256-noD-%s.wav"%name, 40000, audio)## | |
# wavfile.write("ft-mi-freeze-vocoder-flow-enc_q_1k-%s.wav"%name, 40000, audio)## | |
# wavfile.write("ft-mi-sim1k-%s.wav"%name, 40000, audio)## | |
wavfile.write("ft-mi-no_opt-no_dropout-%s.wav" % name, 40000, audio) ## | |
logger.debug("%.2fs %.2fs %.2fs", ta0, ta1, ta2) # | |