Spaces:
Running
on
Zero
Running
on
Zero
""" | |
格式:直接cid为自带的index位;aid放不下了,通过字典来查,反正就5w个 | |
""" | |
import os | |
import traceback | |
import logging | |
logger = logging.getLogger(__name__) | |
from multiprocessing import cpu_count | |
import faiss | |
import numpy as np | |
from sklearn.cluster import MiniBatchKMeans | |
# ###########如果是原始特征要先写save | |
n_cpu = 0 | |
if n_cpu == 0: | |
n_cpu = cpu_count() | |
inp_root = r"./logs/anz/3_feature768" | |
npys = [] | |
listdir_res = list(os.listdir(inp_root)) | |
for name in sorted(listdir_res): | |
phone = np.load("%s/%s" % (inp_root, name)) | |
npys.append(phone) | |
big_npy = np.concatenate(npys, 0) | |
big_npy_idx = np.arange(big_npy.shape[0]) | |
np.random.shuffle(big_npy_idx) | |
big_npy = big_npy[big_npy_idx] | |
logger.debug(big_npy.shape) # (6196072, 192)#fp32#4.43G | |
if big_npy.shape[0] > 2e5: | |
# if(1): | |
info = "Trying doing kmeans %s shape to 10k centers." % big_npy.shape[0] | |
logger.info(info) | |
try: | |
big_npy = ( | |
MiniBatchKMeans( | |
n_clusters=10000, | |
verbose=True, | |
batch_size=256 * n_cpu, | |
compute_labels=False, | |
init="random", | |
) | |
.fit(big_npy) | |
.cluster_centers_ | |
) | |
except: | |
info = traceback.format_exc() | |
logger.warn(info) | |
np.save("tools/infer/big_src_feature_mi.npy", big_npy) | |
##################train+add | |
# big_npy=np.load("/bili-coeus/jupyter/jupyterhub-liujing04/vits_ch/inference_f0/big_src_feature_mi.npy") | |
n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39) | |
index = faiss.index_factory(768, "IVF%s,Flat" % n_ivf) # mi | |
logger.info("Training...") | |
index_ivf = faiss.extract_index_ivf(index) # | |
index_ivf.nprobe = 1 | |
index.train(big_npy) | |
faiss.write_index( | |
index, "tools/infer/trained_IVF%s_Flat_baseline_src_feat_v2.index" % (n_ivf) | |
) | |
logger.info("Adding...") | |
batch_size_add = 8192 | |
for i in range(0, big_npy.shape[0], batch_size_add): | |
index.add(big_npy[i : i + batch_size_add]) | |
faiss.write_index( | |
index, "tools/infer/added_IVF%s_Flat_mi_baseline_src_feat.index" % (n_ivf) | |
) | |
""" | |
大小(都是FP32) | |
big_src_feature 2.95G | |
(3098036, 256) | |
big_emb 4.43G | |
(6196072, 192) | |
big_emb双倍是因为求特征要repeat后再加pitch | |
""" | |