Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from torch.nn.functional import conv1d, conv2d | |
from typing import Union, Optional | |
from .utils import linspace, temperature_sigmoid, amp_to_db | |
class TorchGate(torch.nn.Module): | |
""" | |
A PyTorch module that applies a spectral gate to an input signal. | |
Arguments: | |
sr {int} -- Sample rate of the input signal. | |
nonstationary {bool} -- Whether to use non-stationary or stationary masking (default: {False}). | |
n_std_thresh_stationary {float} -- Number of standard deviations above mean to threshold noise for | |
stationary masking (default: {1.5}). | |
n_thresh_nonstationary {float} -- Number of multiplies above smoothed magnitude spectrogram. for | |
non-stationary masking (default: {1.3}). | |
temp_coeff_nonstationary {float} -- Temperature coefficient for non-stationary masking (default: {0.1}). | |
n_movemean_nonstationary {int} -- Number of samples for moving average smoothing in non-stationary masking | |
(default: {20}). | |
prop_decrease {float} -- Proportion to decrease signal by where the mask is zero (default: {1.0}). | |
n_fft {int} -- Size of FFT for STFT (default: {1024}). | |
win_length {[int]} -- Window length for STFT. If None, defaults to `n_fft` (default: {None}). | |
hop_length {[int]} -- Hop length for STFT. If None, defaults to `win_length` // 4 (default: {None}). | |
freq_mask_smooth_hz {float} -- Frequency smoothing width for mask (in Hz). If None, no smoothing is applied | |
(default: {500}). | |
time_mask_smooth_ms {float} -- Time smoothing width for mask (in ms). If None, no smoothing is applied | |
(default: {50}). | |
""" | |
def __init__( | |
self, | |
sr: int, | |
nonstationary: bool = False, | |
n_std_thresh_stationary: float = 1.5, | |
n_thresh_nonstationary: float = 1.3, | |
temp_coeff_nonstationary: float = 0.1, | |
n_movemean_nonstationary: int = 20, | |
prop_decrease: float = 1.0, | |
n_fft: int = 1024, | |
win_length: bool = None, | |
hop_length: int = None, | |
freq_mask_smooth_hz: float = 500, | |
time_mask_smooth_ms: float = 50, | |
): | |
super().__init__() | |
# General Params | |
self.sr = sr | |
self.nonstationary = nonstationary | |
assert 0.0 <= prop_decrease <= 1.0 | |
self.prop_decrease = prop_decrease | |
# STFT Params | |
self.n_fft = n_fft | |
self.win_length = self.n_fft if win_length is None else win_length | |
self.hop_length = self.win_length // 4 if hop_length is None else hop_length | |
# Stationary Params | |
self.n_std_thresh_stationary = n_std_thresh_stationary | |
# Non-Stationary Params | |
self.temp_coeff_nonstationary = temp_coeff_nonstationary | |
self.n_movemean_nonstationary = n_movemean_nonstationary | |
self.n_thresh_nonstationary = n_thresh_nonstationary | |
# Smooth Mask Params | |
self.freq_mask_smooth_hz = freq_mask_smooth_hz | |
self.time_mask_smooth_ms = time_mask_smooth_ms | |
self.register_buffer("smoothing_filter", self._generate_mask_smoothing_filter()) | |
def _generate_mask_smoothing_filter(self) -> Union[torch.Tensor, None]: | |
""" | |
A PyTorch module that applies a spectral gate to an input signal using the STFT. | |
Returns: | |
smoothing_filter (torch.Tensor): a 2D tensor representing the smoothing filter, | |
with shape (n_grad_freq, n_grad_time), where n_grad_freq is the number of frequency | |
bins to smooth and n_grad_time is the number of time frames to smooth. | |
If both self.freq_mask_smooth_hz and self.time_mask_smooth_ms are None, returns None. | |
""" | |
if self.freq_mask_smooth_hz is None and self.time_mask_smooth_ms is None: | |
return None | |
n_grad_freq = ( | |
1 | |
if self.freq_mask_smooth_hz is None | |
else int(self.freq_mask_smooth_hz / (self.sr / (self.n_fft / 2))) | |
) | |
if n_grad_freq < 1: | |
raise ValueError( | |
f"freq_mask_smooth_hz needs to be at least {int((self.sr / (self._n_fft / 2)))} Hz" | |
) | |
n_grad_time = ( | |
1 | |
if self.time_mask_smooth_ms is None | |
else int(self.time_mask_smooth_ms / ((self.hop_length / self.sr) * 1000)) | |
) | |
if n_grad_time < 1: | |
raise ValueError( | |
f"time_mask_smooth_ms needs to be at least {int((self.hop_length / self.sr) * 1000)} ms" | |
) | |
if n_grad_time == 1 and n_grad_freq == 1: | |
return None | |
v_f = torch.cat( | |
[ | |
linspace(0, 1, n_grad_freq + 1, endpoint=False), | |
linspace(1, 0, n_grad_freq + 2), | |
] | |
)[1:-1] | |
v_t = torch.cat( | |
[ | |
linspace(0, 1, n_grad_time + 1, endpoint=False), | |
linspace(1, 0, n_grad_time + 2), | |
] | |
)[1:-1] | |
smoothing_filter = torch.outer(v_f, v_t).unsqueeze(0).unsqueeze(0) | |
return smoothing_filter / smoothing_filter.sum() | |
def _stationary_mask( | |
self, X_db: torch.Tensor, xn: Optional[torch.Tensor] = None | |
) -> torch.Tensor: | |
""" | |
Computes a stationary binary mask to filter out noise in a log-magnitude spectrogram. | |
Arguments: | |
X_db (torch.Tensor): 2D tensor of shape (frames, freq_bins) containing the log-magnitude spectrogram. | |
xn (torch.Tensor): 1D tensor containing the audio signal corresponding to X_db. | |
Returns: | |
sig_mask (torch.Tensor): Binary mask of the same shape as X_db, where values greater than the threshold | |
are set to 1, and the rest are set to 0. | |
""" | |
if xn is not None: | |
XN = torch.stft( | |
xn, | |
n_fft=self.n_fft, | |
hop_length=self.hop_length, | |
win_length=self.win_length, | |
return_complex=True, | |
pad_mode="constant", | |
center=True, | |
window=torch.hann_window(self.win_length).to(xn.device), | |
) | |
XN_db = amp_to_db(XN).to(dtype=X_db.dtype) | |
else: | |
XN_db = X_db | |
# calculate mean and standard deviation along the frequency axis | |
std_freq_noise, mean_freq_noise = torch.std_mean(XN_db, dim=-1) | |
# compute noise threshold | |
noise_thresh = mean_freq_noise + std_freq_noise * self.n_std_thresh_stationary | |
# create binary mask by thresholding the spectrogram | |
sig_mask = X_db > noise_thresh.unsqueeze(2) | |
return sig_mask | |
def _nonstationary_mask(self, X_abs: torch.Tensor) -> torch.Tensor: | |
""" | |
Computes a non-stationary binary mask to filter out noise in a log-magnitude spectrogram. | |
Arguments: | |
X_abs (torch.Tensor): 2D tensor of shape (frames, freq_bins) containing the magnitude spectrogram. | |
Returns: | |
sig_mask (torch.Tensor): Binary mask of the same shape as X_abs, where values greater than the threshold | |
are set to 1, and the rest are set to 0. | |
""" | |
X_smoothed = ( | |
conv1d( | |
X_abs.reshape(-1, 1, X_abs.shape[-1]), | |
torch.ones( | |
self.n_movemean_nonstationary, | |
dtype=X_abs.dtype, | |
device=X_abs.device, | |
).view(1, 1, -1), | |
padding="same", | |
).view(X_abs.shape) | |
/ self.n_movemean_nonstationary | |
) | |
# Compute slowness ratio and apply temperature sigmoid | |
slowness_ratio = (X_abs - X_smoothed) / (X_smoothed + 1e-6) | |
sig_mask = temperature_sigmoid( | |
slowness_ratio, self.n_thresh_nonstationary, self.temp_coeff_nonstationary | |
) | |
return sig_mask | |
def forward( | |
self, x: torch.Tensor, xn: Optional[torch.Tensor] = None | |
) -> torch.Tensor: | |
""" | |
Apply the proposed algorithm to the input signal. | |
Arguments: | |
x (torch.Tensor): The input audio signal, with shape (batch_size, signal_length). | |
xn (Optional[torch.Tensor]): The noise signal used for stationary noise reduction. If `None`, the input | |
signal is used as the noise signal. Default: `None`. | |
Returns: | |
torch.Tensor: The denoised audio signal, with the same shape as the input signal. | |
""" | |
assert x.ndim == 2 | |
if x.shape[-1] < self.win_length * 2: | |
raise Exception(f"x must be bigger than {self.win_length * 2}") | |
assert xn is None or xn.ndim == 1 or xn.ndim == 2 | |
if xn is not None and xn.shape[-1] < self.win_length * 2: | |
raise Exception(f"xn must be bigger than {self.win_length * 2}") | |
# Compute short-time Fourier transform (STFT) | |
X = torch.stft( | |
x, | |
n_fft=self.n_fft, | |
hop_length=self.hop_length, | |
win_length=self.win_length, | |
return_complex=True, | |
pad_mode="constant", | |
center=True, | |
window=torch.hann_window(self.win_length).to(x.device), | |
) | |
# Compute signal mask based on stationary or nonstationary assumptions | |
if self.nonstationary: | |
sig_mask = self._nonstationary_mask(X.abs()) | |
else: | |
sig_mask = self._stationary_mask(amp_to_db(X), xn) | |
# Propagate decrease in signal power | |
sig_mask = self.prop_decrease * (sig_mask * 1.0 - 1.0) + 1.0 | |
# Smooth signal mask with 2D convolution | |
if self.smoothing_filter is not None: | |
sig_mask = conv2d( | |
sig_mask.unsqueeze(1), | |
self.smoothing_filter.to(sig_mask.dtype), | |
padding="same", | |
) | |
# Apply signal mask to STFT magnitude and phase components | |
Y = X * sig_mask.squeeze(1) | |
# Inverse STFT to obtain time-domain signal | |
y = torch.istft( | |
Y, | |
n_fft=self.n_fft, | |
hop_length=self.hop_length, | |
win_length=self.win_length, | |
center=True, | |
window=torch.hann_window(self.win_length).to(Y.device), | |
) | |
return y.to(dtype=x.dtype) | |