Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import json | |
import os | |
version_config_list = [ | |
"v1/32000.json", | |
"v1/40000.json", | |
"v1/48000.json", | |
"v2/48000.json", | |
"v2/32000.json", | |
] | |
def singleton_variable(func): | |
def wrapper(*args, **kwargs): | |
if not wrapper.instance: | |
wrapper.instance = func(*args, **kwargs) | |
return wrapper.instance | |
wrapper.instance = None | |
return wrapper | |
class Config: | |
def __init__(self): | |
self.device = "cuda:0" | |
self.is_half = True | |
self.use_jit = False | |
self.n_cpu = 0 | |
self.gpu_name = None | |
self.json_config = self.load_config_json() | |
self.gpu_mem = None | |
self.instead = "" | |
self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config() | |
def load_config_json() -> dict: | |
d = {} | |
for config_file in version_config_list: | |
with open(f"rvc/configs/{config_file}", "r") as f: | |
d[config_file] = json.load(f) | |
return d | |
def has_mps() -> bool: | |
if not torch.backends.mps.is_available(): | |
return False | |
try: | |
torch.zeros(1).to(torch.device("mps")) | |
return True | |
except Exception: | |
return False | |
def has_xpu() -> bool: | |
if hasattr(torch, "xpu") and torch.xpu.is_available(): | |
return True | |
else: | |
return False | |
def use_fp32_config(self): | |
print( | |
f"Using FP32 config instead of FP16 due to GPU compatibility ({self.gpu_name})" | |
) | |
for config_file in version_config_list: | |
self.json_config[config_file]["train"]["fp16_run"] = False | |
with open(f"rvc/configs/{config_file}", "r") as f: | |
strr = f.read().replace("true", "false") | |
with open(f"rvc/configs/{config_file}", "w") as f: | |
f.write(strr) | |
with open("rvc/train/preprocess/preprocess.py", "r") as f: | |
strr = f.read().replace("3.7", "3.0") | |
with open("rvc/train/preprocess/preprocess.py", "w") as f: | |
f.write(strr) | |
def device_config(self) -> tuple: | |
if torch.cuda.is_available(): | |
if self.has_xpu(): | |
self.device = self.instead = "xpu:0" | |
self.is_half = True | |
i_device = int(self.device.split(":")[-1]) | |
self.gpu_name = torch.cuda.get_device_name(i_device) | |
if ( | |
("16" in self.gpu_name and "V100" not in self.gpu_name.upper()) | |
or "P40" in self.gpu_name.upper() | |
or "P10" in self.gpu_name.upper() | |
or "1060" in self.gpu_name | |
or "1070" in self.gpu_name | |
or "1080" in self.gpu_name | |
): | |
self.is_half = False | |
self.use_fp32_config() | |
self.gpu_mem = int( | |
torch.cuda.get_device_properties(i_device).total_memory | |
/ 1024 | |
/ 1024 | |
/ 1024 | |
+ 0.4 | |
) | |
if self.gpu_mem <= 4: | |
with open("rvc/train/preprocess/preprocess.py", "r") as f: | |
strr = f.read().replace("3.7", "3.0") | |
with open("rvc/train/preprocess/preprocess.py", "w") as f: | |
f.write(strr) | |
elif self.has_mps(): | |
print("No supported Nvidia GPU found") | |
self.device = self.instead = "mps" | |
self.is_half = False | |
self.use_fp32_config() | |
else: | |
print("No supported Nvidia GPU found") | |
self.device = self.instead = "cpu" | |
self.is_half = False | |
self.use_fp32_config() | |
if self.n_cpu == 0: | |
self.n_cpu = os.cpu_count() | |
if self.is_half: | |
x_pad = 3 | |
x_query = 10 | |
x_center = 60 | |
x_max = 65 | |
else: | |
x_pad = 1 | |
x_query = 6 | |
x_center = 38 | |
x_max = 41 | |
if self.gpu_mem is not None and self.gpu_mem <= 4: | |
x_pad = 1 | |
x_query = 5 | |
x_center = 30 | |
x_max = 32 | |
return x_pad, x_query, x_center, x_max | |
def max_vram_gpu(gpu): | |
if torch.cuda.is_available(): | |
gpu_properties = torch.cuda.get_device_properties(gpu) | |
total_memory_gb = round(gpu_properties.total_memory / 1024 / 1024 / 1024) | |
return total_memory_gb | |
else: | |
return "0" | |
def get_gpu_info(): | |
ngpu = torch.cuda.device_count() | |
gpu_infos = [] | |
if torch.cuda.is_available() or ngpu != 0: | |
for i in range(ngpu): | |
gpu_name = torch.cuda.get_device_name(i) | |
mem = int( | |
torch.cuda.get_device_properties(i).total_memory / 1024 / 1024 / 1024 | |
+ 0.4 | |
) | |
gpu_infos.append("%s: %s %s GB" % (i, gpu_name, mem)) | |
if len(gpu_infos) > 0: | |
gpu_info = "\n".join(gpu_infos) | |
else: | |
gpu_info = "Unfortunately, there is no compatible GPU available to support your training." | |
return gpu_info | |