Spaces:
Running
Running
File size: 10,775 Bytes
7bc29af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import os
from pathlib import Path
def get_parser():
parser = argparse.ArgumentParser("demucs", description="Train and evaluate Demucs.")
default_raw = None
default_musdb = None
if 'DEMUCS_RAW' in os.environ:
default_raw = Path(os.environ['DEMUCS_RAW'])
if 'DEMUCS_MUSDB' in os.environ:
default_musdb = Path(os.environ['DEMUCS_MUSDB'])
parser.add_argument(
"--raw",
type=Path,
default=default_raw,
help="Path to raw audio, can be faster, see python3 -m demucs.raw to extract.")
parser.add_argument("--no_raw", action="store_const", const=None, dest="raw")
parser.add_argument("-m",
"--musdb",
type=Path,
default=default_musdb,
help="Path to musdb root")
parser.add_argument("--is_wav", action="store_true",
help="Indicate that the MusDB dataset is in wav format (i.e. MusDB-HQ).")
parser.add_argument("--metadata", type=Path, default=Path("metadata/"),
help="Folder where metadata information is stored.")
parser.add_argument("--wav", type=Path,
help="Path to a wav dataset. This should contain a 'train' and a 'valid' "
"subfolder.")
parser.add_argument("--samplerate", type=int, default=44100)
parser.add_argument("--audio_channels", type=int, default=2)
parser.add_argument("--samples",
default=44100 * 10,
type=int,
help="number of samples to feed in")
parser.add_argument("--data_stride",
default=44100,
type=int,
help="Stride for chunks, shorter = longer epochs")
parser.add_argument("-w", "--workers", default=10, type=int, help="Loader workers")
parser.add_argument("--eval_workers", default=2, type=int, help="Final evaluation workers")
parser.add_argument("-d",
"--device",
help="Device to train on, default is cuda if available else cpu")
parser.add_argument("--eval_cpu", action="store_true", help="Eval on test will be run on cpu.")
parser.add_argument("--dummy", help="Dummy parameter, useful to create a new checkpoint file")
parser.add_argument("--test", help="Just run the test pipeline + one validation. "
"This should be a filename relative to the models/ folder.")
parser.add_argument("--test_pretrained", help="Just run the test pipeline + one validation, "
"on a pretrained model. ")
parser.add_argument("--rank", default=0, type=int)
parser.add_argument("--world_size", default=1, type=int)
parser.add_argument("--master")
parser.add_argument("--checkpoints",
type=Path,
default=Path("checkpoints"),
help="Folder where to store checkpoints etc")
parser.add_argument("--evals",
type=Path,
default=Path("evals"),
help="Folder where to store evals and waveforms")
parser.add_argument("--save",
action="store_true",
help="Save estimated for the test set waveforms")
parser.add_argument("--logs",
type=Path,
default=Path("logs"),
help="Folder where to store logs")
parser.add_argument("--models",
type=Path,
default=Path("models"),
help="Folder where to store trained models")
parser.add_argument("-R",
"--restart",
action='store_true',
help='Restart training, ignoring previous run')
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("-e", "--epochs", type=int, default=180, help="Number of epochs")
parser.add_argument("-r",
"--repeat",
type=int,
default=2,
help="Repeat the train set, longer epochs")
parser.add_argument("-b", "--batch_size", type=int, default=64)
parser.add_argument("--lr", type=float, default=3e-4)
parser.add_argument("--mse", action="store_true", help="Use MSE instead of L1")
parser.add_argument("--init", help="Initialize from a pre-trained model.")
# Augmentation options
parser.add_argument("--no_augment",
action="store_false",
dest="augment",
default=True,
help="No basic data augmentation.")
parser.add_argument("--repitch", type=float, default=0.2,
help="Probability to do tempo/pitch change")
parser.add_argument("--max_tempo", type=float, default=12,
help="Maximum relative tempo change in %% when using repitch.")
parser.add_argument("--remix_group_size",
type=int,
default=4,
help="Shuffle sources using group of this size. Useful to somewhat "
"replicate multi-gpu training "
"on less GPUs.")
parser.add_argument("--shifts",
type=int,
default=10,
help="Number of random shifts used for the shift trick.")
parser.add_argument("--overlap",
type=float,
default=0.25,
help="Overlap when --split_valid is passed.")
# See model.py for doc
parser.add_argument("--growth",
type=float,
default=2.,
help="Number of channels between two layers will increase by this factor")
parser.add_argument("--depth",
type=int,
default=6,
help="Number of layers for the encoder and decoder")
parser.add_argument("--lstm_layers", type=int, default=2, help="Number of layers for the LSTM")
parser.add_argument("--channels",
type=int,
default=64,
help="Number of channels for the first encoder layer")
parser.add_argument("--kernel_size",
type=int,
default=8,
help="Kernel size for the (transposed) convolutions")
parser.add_argument("--conv_stride",
type=int,
default=4,
help="Stride for the (transposed) convolutions")
parser.add_argument("--context",
type=int,
default=3,
help="Context size for the decoder convolutions "
"before the transposed convolutions")
parser.add_argument("--rescale",
type=float,
default=0.1,
help="Initial weight rescale reference")
parser.add_argument("--no_resample", action="store_false",
default=True, dest="resample",
help="No Resampling of the input/output x2")
parser.add_argument("--no_glu",
action="store_false",
default=True,
dest="glu",
help="Replace all GLUs by ReLUs")
parser.add_argument("--no_rewrite",
action="store_false",
default=True,
dest="rewrite",
help="No 1x1 rewrite convolutions")
parser.add_argument("--normalize", action="store_true")
parser.add_argument("--no_norm_wav", action="store_false", dest='norm_wav', default=True)
# Tasnet options
parser.add_argument("--tasnet", action="store_true")
parser.add_argument("--split_valid",
action="store_true",
help="Predict chunks by chunks for valid and test. Required for tasnet")
parser.add_argument("--X", type=int, default=8)
# Other options
parser.add_argument("--show",
action="store_true",
help="Show model architecture, size and exit")
parser.add_argument("--save_model", action="store_true",
help="Skip traning, just save final model "
"for the current checkpoint value.")
parser.add_argument("--save_state",
help="Skip training, just save state "
"for the current checkpoint value. You should "
"provide a model name as argument.")
# Quantization options
parser.add_argument("--q-min-size", type=float, default=1,
help="Only quantize layers over this size (in MB)")
parser.add_argument(
"--qat", type=int, help="If provided, use QAT training with that many bits.")
parser.add_argument("--diffq", type=float, default=0)
parser.add_argument(
"--ms-target", type=float, default=162,
help="Model size target in MB, when using DiffQ. Best model will be kept "
"only if it is smaller than this target.")
return parser
def get_name(parser, args):
"""
Return the name of an experiment given the args. Some parameters are ignored,
for instance --workers, as they do not impact the final result.
"""
ignore_args = set([
"checkpoints",
"deterministic",
"eval",
"evals",
"eval_cpu",
"eval_workers",
"logs",
"master",
"rank",
"restart",
"save",
"save_model",
"save_state",
"show",
"workers",
"world_size",
])
parts = []
name_args = dict(args.__dict__)
for name, value in name_args.items():
if name in ignore_args:
continue
if value != parser.get_default(name):
if isinstance(value, Path):
parts.append(f"{name}={value.name}")
else:
parts.append(f"{name}={value}")
if parts:
name = " ".join(parts)
else:
name = "default"
return name
|