Spaces:
r3gm
/
Running

File size: 3,690 Bytes
7bc29af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import torch
from torch import nn
import torch.nn.functional as F

from . import spec_utils


class Conv2DBNActiv(nn.Module):
    def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
        super(Conv2DBNActiv, self).__init__()
        self.conv = nn.Sequential(
            nn.Conv2d(
                nin,
                nout,
                kernel_size=ksize,
                stride=stride,
                padding=pad,
                dilation=dilation,
                bias=False,
            ),
            nn.BatchNorm2d(nout),
            activ(),
        )

    def __call__(self, x):
        return self.conv(x)


class SeperableConv2DBNActiv(nn.Module):
    def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
        super(SeperableConv2DBNActiv, self).__init__()
        self.conv = nn.Sequential(
            nn.Conv2d(
                nin,
                nin,
                kernel_size=ksize,
                stride=stride,
                padding=pad,
                dilation=dilation,
                groups=nin,
                bias=False,
            ),
            nn.Conv2d(nin, nout, kernel_size=1, bias=False),
            nn.BatchNorm2d(nout),
            activ(),
        )

    def __call__(self, x):
        return self.conv(x)


class Encoder(nn.Module):
    def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
        super(Encoder, self).__init__()
        self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
        self.conv2 = Conv2DBNActiv(nout, nout, ksize, stride, pad, activ=activ)

    def __call__(self, x):
        skip = self.conv1(x)
        h = self.conv2(skip)

        return h, skip


class Decoder(nn.Module):
    def __init__(
        self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False
    ):
        super(Decoder, self).__init__()
        self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
        self.dropout = nn.Dropout2d(0.1) if dropout else None

    def __call__(self, x, skip=None):
        x = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=True)
        if skip is not None:
            skip = spec_utils.crop_center(skip, x)
            x = torch.cat([x, skip], dim=1)
        h = self.conv(x)

        if self.dropout is not None:
            h = self.dropout(h)

        return h


class ASPPModule(nn.Module):
    def __init__(self, nin, nout, dilations=(4, 8, 16), activ=nn.ReLU):
        super(ASPPModule, self).__init__()
        self.conv1 = nn.Sequential(
            nn.AdaptiveAvgPool2d((1, None)),
            Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ),
        )
        self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
        self.conv3 = SeperableConv2DBNActiv(
            nin, nin, 3, 1, dilations[0], dilations[0], activ=activ
        )
        self.conv4 = SeperableConv2DBNActiv(
            nin, nin, 3, 1, dilations[1], dilations[1], activ=activ
        )
        self.conv5 = SeperableConv2DBNActiv(
            nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
        )
        self.bottleneck = nn.Sequential(
            Conv2DBNActiv(nin * 5, nout, 1, 1, 0, activ=activ), nn.Dropout2d(0.1)
        )

    def forward(self, x):
        _, _, h, w = x.size()
        feat1 = F.interpolate(
            self.conv1(x), size=(h, w), mode="bilinear", align_corners=True
        )
        feat2 = self.conv2(x)
        feat3 = self.conv3(x)
        feat4 = self.conv4(x)
        feat5 = self.conv5(x)
        out = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1)
        bottle = self.bottleneck(out)
        return bottle