Spaces:
Running
Running
import os | |
import sys | |
import traceback | |
import parselmouth | |
now_dir = os.getcwd() | |
sys.path.append(now_dir) | |
import logging | |
from LazyImport import lazyload | |
import numpy as np | |
import pyworld | |
torchcrepe = lazyload("torchcrepe") # Fork Feature. Crepe algo for training and preprocess | |
torch = lazyload("torch") | |
#from torch import Tensor # Fork Feature. Used for pitch prediction for torch crepe. | |
tqdm = lazyload("tqdm") | |
from infer.lib.audio import load_audio | |
logging.getLogger("numba").setLevel(logging.WARNING) | |
from multiprocessing import Process | |
exp_dir = sys.argv[1] | |
f = open("%s/extract_f0_feature.log" % exp_dir, "a+") | |
DoFormant = False | |
Quefrency = 1.0 | |
Timbre = 1.0 | |
def printt(strr): | |
print(strr) | |
f.write(f"{strr}\n") | |
f.flush() | |
n_p = int(sys.argv[2]) | |
f0method = sys.argv[3] | |
extraction_crepe_hop_length = 0 | |
try: | |
extraction_crepe_hop_length = int(sys.argv[4]) | |
except: | |
print("Temp Issue. echl is not being passed with argument!") | |
extraction_crepe_hop_length = 128 | |
class FeatureInput(object): | |
def __init__(self, samplerate=16000, hop_size=160): | |
self.fs = samplerate | |
self.hop = hop_size | |
self.f0_bin = 256 | |
self.f0_max = 1100.0 | |
self.f0_min = 50.0 | |
self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700) | |
self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700) | |
def mncrepe(self, method, x, p_len, crepe_hop_length): | |
f0 = None | |
torch_device_index = 0 | |
torch_device = torch.device( | |
f"cuda:{torch_device_index % torch.cuda.device_count()}" | |
) if torch.cuda.is_available() \ | |
else torch.device("mps") if torch.backends.mps.is_available() \ | |
else torch.device("cpu") | |
audio = torch.from_numpy(x.astype(np.float32)).to(torch_device, copy=True) | |
audio /= torch.quantile(torch.abs(audio), 0.999) | |
audio = torch.unsqueeze(audio, dim=0) | |
if audio.ndim == 2 and audio.shape[0] > 1: | |
audio = torch.mean(audio, dim=0, keepdim=True).detach() | |
audio = audio.detach() | |
if method == 'mangio-crepe': | |
pitch: torch.Tensor = torchcrepe.predict( | |
audio, | |
self.fs, | |
crepe_hop_length, | |
self.f0_min, | |
self.f0_max, | |
"full", | |
batch_size=crepe_hop_length * 2, | |
device=torch_device, | |
pad=True, | |
) | |
p_len = p_len or x.shape[0] // crepe_hop_length | |
# Resize the pitch | |
source = np.array(pitch.squeeze(0).cpu().float().numpy()) | |
source[source < 0.001] = np.nan | |
target = np.interp( | |
np.arange(0, len(source) * p_len, len(source)) / p_len, | |
np.arange(0, len(source)), | |
source, | |
) | |
f0 = np.nan_to_num(target) | |
elif method == 'crepe': | |
batch_size = 512 | |
audio = torch.tensor(np.copy(x))[None].float() | |
f0, pd = torchcrepe.predict( | |
audio, | |
self.fs, | |
160, | |
self.f0_min, | |
self.f0_max, | |
"full", | |
batch_size=batch_size, | |
device=torch_device, | |
return_periodicity=True, | |
) | |
pd = torchcrepe.filter.median(pd, 3) | |
f0 = torchcrepe.filter.mean(f0, 3) | |
f0[pd < 0.1] = 0 | |
f0 = f0[0].cpu().numpy() | |
f0 = f0[1:] # Get rid of extra first frame | |
return f0 | |
def get_pm(self, x, p_len): | |
f0 = parselmouth.Sound(x, self.fs).to_pitch_ac( | |
time_step=160 / 16000, | |
voicing_threshold=0.6, | |
pitch_floor=self.f0_min, | |
pitch_ceiling=self.f0_max, | |
).selected_array["frequency"] | |
return np.pad( | |
f0, | |
[[max(0, (p_len - len(f0) + 1) // 2), max(0, p_len - len(f0) - (p_len - len(f0) + 1) // 2)]], | |
mode="constant" | |
) | |
def get_harvest(self, x): | |
f0_spectral = pyworld.harvest( | |
x.astype(np.double), | |
fs=self.fs, | |
f0_ceil=self.f0_max, | |
f0_floor=self.f0_min, | |
frame_period=1000 * self.hop / self.fs, | |
) | |
return pyworld.stonemask(x.astype(np.double), *f0_spectral, self.fs) | |
def get_dio(self, x): | |
f0_spectral = pyworld.dio( | |
x.astype(np.double), | |
fs=self.fs, | |
f0_ceil=self.f0_max, | |
f0_floor=self.f0_min, | |
frame_period=1000 * self.hop / self.fs, | |
) | |
return pyworld.stonemask(x.astype(np.double), *f0_spectral, self.fs) | |
def get_rmvpe(self, x): | |
if hasattr(self, "model_rmvpe") == False: | |
from infer.lib.rmvpe import RMVPE | |
print("Loading rmvpe model") | |
self.model_rmvpe = RMVPE( | |
"assets/rmvpe/rmvpe.pt", is_half=False, device="cpu" | |
) | |
return self.model_rmvpe.infer_from_audio(x, thred=0.03) | |
def get_rmvpe_dml(self, x): | |
... | |
def get_f0_method_dict(self): | |
return { | |
"pm": self.get_pm, | |
"harvest": self.get_harvest, | |
"dio": self.get_dio, | |
"rmvpe": self.get_rmvpe | |
} | |
def get_f0_hybrid_computation( | |
self, | |
methods_str, | |
x, | |
p_len, | |
crepe_hop_length, | |
): | |
# Get various f0 methods from input to use in the computation stack | |
s = methods_str | |
s = s.split("hybrid")[1] | |
s = s.replace("[", "").replace("]", "") | |
methods = s.split("+") | |
f0_computation_stack = [] | |
for method in methods: | |
if method in self.f0_method_dict: | |
f0 = self.f0_method_dict[method](x, p_len) if method == 'pm' else self.f0_method_dict[method](x) | |
f0_computation_stack.append(f0) | |
elif method == 'crepe' or method == 'mangio-crepe': | |
self.the_other_complex_function(x, method, crepe_hop_length) | |
if len(f0_computation_stack) != 0: | |
f0_median_hybrid = np.nanmedian(f0_computation_stack, axis=0) if len(f0_computation_stack)>1 else f0_computation_stack[0] | |
return f0_median_hybrid | |
else: | |
raise ValueError("No valid methods were provided") | |
def compute_f0(self, path, f0_method, crepe_hop_length): | |
x = load_audio(path, self.fs, DoFormant, Quefrency, Timbre) | |
p_len = x.shape[0] // self.hop | |
if f0_method in self.f0_method_dict: | |
f0 = self.f0_method_dict[f0_method](x, p_len) if f0_method == 'pm' else self.f0_method_dict[f0_method](x) | |
elif f0_method in ['crepe', 'mangio-crepe']: | |
f0 = self.mncrepe(f0_method, x, p_len, crepe_hop_length) | |
elif "hybrid" in f0_method: # EXPERIMENTAL | |
# Perform hybrid median pitch estimation | |
f0 = self.get_f0_hybrid_computation( | |
f0_method, | |
x, | |
p_len, | |
crepe_hop_length, | |
) | |
return f0 | |
def coarse_f0(self, f0): | |
f0_mel = 1127 * np.log(1 + f0 / 700) | |
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - self.f0_mel_min) * ( | |
self.f0_bin - 2 | |
) / (self.f0_mel_max - self.f0_mel_min) + 1 | |
# use 0 or 1 | |
f0_mel[f0_mel <= 1] = 1 | |
f0_mel[f0_mel > self.f0_bin - 1] = self.f0_bin - 1 | |
f0_coarse = np.rint(f0_mel).astype(int) | |
assert f0_coarse.max() <= 255 and f0_coarse.min() >= 1, ( | |
f0_coarse.max(), | |
f0_coarse.min(), | |
) | |
return f0_coarse | |
def go(self, paths, f0_method, crepe_hop_length, thread_n): | |
if len(paths) == 0: | |
printt("no-f0-todo") | |
return | |
with tqdm.tqdm(total=len(paths), leave=True, position=thread_n) as pbar: | |
description = f"thread:{thread_n}, f0ing, Hop-Length:{crepe_hop_length}" | |
pbar.set_description(description) | |
for idx, (inp_path, opt_path1, opt_path2) in enumerate(paths): | |
try: | |
if ( | |
os.path.exists(opt_path1 + ".npy") | |
and os.path.exists(opt_path2 + ".npy") | |
): | |
pbar.update(1) | |
continue | |
featur_pit = self.compute_f0(inp_path, f0_method, crepe_hop_length) | |
np.save( | |
opt_path2, | |
featur_pit, | |
allow_pickle=False, | |
) # nsf | |
coarse_pit = self.coarse_f0(featur_pit) | |
np.save( | |
opt_path1, | |
coarse_pit, | |
allow_pickle=False, | |
) # ori | |
pbar.update(1) | |
except Exception as e: | |
printt(f"f0fail-{idx}-{inp_path}-{traceback.format_exc()}") | |
if __name__ == "__main__": | |
# exp_dir=r"E:\codes\py39\dataset\mi-test" | |
# n_p=16 | |
# f = open("%s/log_extract_f0.log"%exp_dir, "w") | |
printt(sys.argv) | |
featureInput = FeatureInput() | |
paths = [] | |
inp_root = "%s/1_16k_wavs" % (exp_dir) | |
opt_root1 = "%s/2a_f0" % (exp_dir) | |
opt_root2 = "%s/2b-f0nsf" % (exp_dir) | |
os.makedirs(opt_root1, exist_ok=True) | |
os.makedirs(opt_root2, exist_ok=True) | |
for name in sorted(list(os.listdir(inp_root))): | |
inp_path = "%s/%s" % (inp_root, name) | |
if "spec" in inp_path: | |
continue | |
opt_path1 = "%s/%s" % (opt_root1, name) | |
opt_path2 = "%s/%s" % (opt_root2, name) | |
paths.append([inp_path, opt_path1, opt_path2]) | |
ps = [] | |
print("Using f0 method: " + f0method) | |
for i in range(n_p): | |
p = Process( | |
target=featureInput.go, | |
args=(paths[i::n_p], f0method, extraction_crepe_hop_length, i), | |
) | |
ps.append(p) | |
p.start() | |
for i in range(n_p): | |
ps[i].join() |