Spaces:
Running
Running
# Copyright (c) Facebook, Inc. and its affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
# | |
# Created on 2018/12 | |
# Author: Kaituo XU | |
# Modified on 2019/11 by Alexandre Defossez, added support for multiple output channels | |
# Here is the original license: | |
# The MIT License (MIT) | |
# | |
# Copyright (c) 2018 Kaituo XU | |
# | |
# Permission is hereby granted, free of charge, to any person obtaining a copy | |
# of this software and associated documentation files (the "Software"), to deal | |
# in the Software without restriction, including without limitation the rights | |
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
# copies of the Software, and to permit persons to whom the Software is | |
# furnished to do so, subject to the following conditions: | |
# | |
# The above copyright notice and this permission notice shall be included in all | |
# copies or substantial portions of the Software. | |
# | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
# SOFTWARE. | |
import math | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from .utils import capture_init | |
EPS = 1e-8 | |
def overlap_and_add(signal, frame_step): | |
outer_dimensions = signal.size()[:-2] | |
frames, frame_length = signal.size()[-2:] | |
subframe_length = math.gcd(frame_length, frame_step) # gcd=Greatest Common Divisor | |
subframe_step = frame_step // subframe_length | |
subframes_per_frame = frame_length // subframe_length | |
output_size = frame_step * (frames - 1) + frame_length | |
output_subframes = output_size // subframe_length | |
subframe_signal = signal.view(*outer_dimensions, -1, subframe_length) | |
frame = torch.arange(0, output_subframes, | |
device=signal.device).unfold(0, subframes_per_frame, subframe_step) | |
frame = frame.long() # signal may in GPU or CPU | |
frame = frame.contiguous().view(-1) | |
result = signal.new_zeros(*outer_dimensions, output_subframes, subframe_length) | |
result.index_add_(-2, frame, subframe_signal) | |
result = result.view(*outer_dimensions, -1) | |
return result | |
class ConvTasNet(nn.Module): | |
def __init__(self, | |
sources, | |
N=256, | |
L=20, | |
B=256, | |
H=512, | |
P=3, | |
X=8, | |
R=4, | |
audio_channels=2, | |
norm_type="gLN", | |
causal=False, | |
mask_nonlinear='relu', | |
samplerate=44100, | |
segment_length=44100 * 2 * 4): | |
""" | |
Args: | |
sources: list of sources | |
N: Number of filters in autoencoder | |
L: Length of the filters (in samples) | |
B: Number of channels in bottleneck 1 × 1-conv block | |
H: Number of channels in convolutional blocks | |
P: Kernel size in convolutional blocks | |
X: Number of convolutional blocks in each repeat | |
R: Number of repeats | |
norm_type: BN, gLN, cLN | |
causal: causal or non-causal | |
mask_nonlinear: use which non-linear function to generate mask | |
""" | |
super(ConvTasNet, self).__init__() | |
# Hyper-parameter | |
self.sources = sources | |
self.C = len(sources) | |
self.N, self.L, self.B, self.H, self.P, self.X, self.R = N, L, B, H, P, X, R | |
self.norm_type = norm_type | |
self.causal = causal | |
self.mask_nonlinear = mask_nonlinear | |
self.audio_channels = audio_channels | |
self.samplerate = samplerate | |
self.segment_length = segment_length | |
# Components | |
self.encoder = Encoder(L, N, audio_channels) | |
self.separator = TemporalConvNet( | |
N, B, H, P, X, R, self.C, norm_type, causal, mask_nonlinear) | |
self.decoder = Decoder(N, L, audio_channels) | |
# init | |
for p in self.parameters(): | |
if p.dim() > 1: | |
nn.init.xavier_normal_(p) | |
def valid_length(self, length): | |
return length | |
def forward(self, mixture): | |
""" | |
Args: | |
mixture: [M, T], M is batch size, T is #samples | |
Returns: | |
est_source: [M, C, T] | |
""" | |
mixture_w = self.encoder(mixture) | |
est_mask = self.separator(mixture_w) | |
est_source = self.decoder(mixture_w, est_mask) | |
# T changed after conv1d in encoder, fix it here | |
T_origin = mixture.size(-1) | |
T_conv = est_source.size(-1) | |
est_source = F.pad(est_source, (0, T_origin - T_conv)) | |
return est_source | |
class Encoder(nn.Module): | |
"""Estimation of the nonnegative mixture weight by a 1-D conv layer. | |
""" | |
def __init__(self, L, N, audio_channels): | |
super(Encoder, self).__init__() | |
# Hyper-parameter | |
self.L, self.N = L, N | |
# Components | |
# 50% overlap | |
self.conv1d_U = nn.Conv1d(audio_channels, N, kernel_size=L, stride=L // 2, bias=False) | |
def forward(self, mixture): | |
""" | |
Args: | |
mixture: [M, T], M is batch size, T is #samples | |
Returns: | |
mixture_w: [M, N, K], where K = (T-L)/(L/2)+1 = 2T/L-1 | |
""" | |
mixture_w = F.relu(self.conv1d_U(mixture)) # [M, N, K] | |
return mixture_w | |
class Decoder(nn.Module): | |
def __init__(self, N, L, audio_channels): | |
super(Decoder, self).__init__() | |
# Hyper-parameter | |
self.N, self.L = N, L | |
self.audio_channels = audio_channels | |
# Components | |
self.basis_signals = nn.Linear(N, audio_channels * L, bias=False) | |
def forward(self, mixture_w, est_mask): | |
""" | |
Args: | |
mixture_w: [M, N, K] | |
est_mask: [M, C, N, K] | |
Returns: | |
est_source: [M, C, T] | |
""" | |
# D = W * M | |
source_w = torch.unsqueeze(mixture_w, 1) * est_mask # [M, C, N, K] | |
source_w = torch.transpose(source_w, 2, 3) # [M, C, K, N] | |
# S = DV | |
est_source = self.basis_signals(source_w) # [M, C, K, ac * L] | |
m, c, k, _ = est_source.size() | |
est_source = est_source.view(m, c, k, self.audio_channels, -1).transpose(2, 3).contiguous() | |
est_source = overlap_and_add(est_source, self.L // 2) # M x C x ac x T | |
return est_source | |
class TemporalConvNet(nn.Module): | |
def __init__(self, N, B, H, P, X, R, C, norm_type="gLN", causal=False, mask_nonlinear='relu'): | |
""" | |
Args: | |
N: Number of filters in autoencoder | |
B: Number of channels in bottleneck 1 × 1-conv block | |
H: Number of channels in convolutional blocks | |
P: Kernel size in convolutional blocks | |
X: Number of convolutional blocks in each repeat | |
R: Number of repeats | |
C: Number of speakers | |
norm_type: BN, gLN, cLN | |
causal: causal or non-causal | |
mask_nonlinear: use which non-linear function to generate mask | |
""" | |
super(TemporalConvNet, self).__init__() | |
# Hyper-parameter | |
self.C = C | |
self.mask_nonlinear = mask_nonlinear | |
# Components | |
# [M, N, K] -> [M, N, K] | |
layer_norm = ChannelwiseLayerNorm(N) | |
# [M, N, K] -> [M, B, K] | |
bottleneck_conv1x1 = nn.Conv1d(N, B, 1, bias=False) | |
# [M, B, K] -> [M, B, K] | |
repeats = [] | |
for r in range(R): | |
blocks = [] | |
for x in range(X): | |
dilation = 2**x | |
padding = (P - 1) * dilation if causal else (P - 1) * dilation // 2 | |
blocks += [ | |
TemporalBlock(B, | |
H, | |
P, | |
stride=1, | |
padding=padding, | |
dilation=dilation, | |
norm_type=norm_type, | |
causal=causal) | |
] | |
repeats += [nn.Sequential(*blocks)] | |
temporal_conv_net = nn.Sequential(*repeats) | |
# [M, B, K] -> [M, C*N, K] | |
mask_conv1x1 = nn.Conv1d(B, C * N, 1, bias=False) | |
# Put together | |
self.network = nn.Sequential(layer_norm, bottleneck_conv1x1, temporal_conv_net, | |
mask_conv1x1) | |
def forward(self, mixture_w): | |
""" | |
Keep this API same with TasNet | |
Args: | |
mixture_w: [M, N, K], M is batch size | |
returns: | |
est_mask: [M, C, N, K] | |
""" | |
M, N, K = mixture_w.size() | |
score = self.network(mixture_w) # [M, N, K] -> [M, C*N, K] | |
score = score.view(M, self.C, N, K) # [M, C*N, K] -> [M, C, N, K] | |
if self.mask_nonlinear == 'softmax': | |
est_mask = F.softmax(score, dim=1) | |
elif self.mask_nonlinear == 'relu': | |
est_mask = F.relu(score) | |
else: | |
raise ValueError("Unsupported mask non-linear function") | |
return est_mask | |
class TemporalBlock(nn.Module): | |
def __init__(self, | |
in_channels, | |
out_channels, | |
kernel_size, | |
stride, | |
padding, | |
dilation, | |
norm_type="gLN", | |
causal=False): | |
super(TemporalBlock, self).__init__() | |
# [M, B, K] -> [M, H, K] | |
conv1x1 = nn.Conv1d(in_channels, out_channels, 1, bias=False) | |
prelu = nn.PReLU() | |
norm = chose_norm(norm_type, out_channels) | |
# [M, H, K] -> [M, B, K] | |
dsconv = DepthwiseSeparableConv(out_channels, in_channels, kernel_size, stride, padding, | |
dilation, norm_type, causal) | |
# Put together | |
self.net = nn.Sequential(conv1x1, prelu, norm, dsconv) | |
def forward(self, x): | |
""" | |
Args: | |
x: [M, B, K] | |
Returns: | |
[M, B, K] | |
""" | |
residual = x | |
out = self.net(x) | |
# TODO: when P = 3 here works fine, but when P = 2 maybe need to pad? | |
return out + residual # look like w/o F.relu is better than w/ F.relu | |
# return F.relu(out + residual) | |
class DepthwiseSeparableConv(nn.Module): | |
def __init__(self, | |
in_channels, | |
out_channels, | |
kernel_size, | |
stride, | |
padding, | |
dilation, | |
norm_type="gLN", | |
causal=False): | |
super(DepthwiseSeparableConv, self).__init__() | |
# Use `groups` option to implement depthwise convolution | |
# [M, H, K] -> [M, H, K] | |
depthwise_conv = nn.Conv1d(in_channels, | |
in_channels, | |
kernel_size, | |
stride=stride, | |
padding=padding, | |
dilation=dilation, | |
groups=in_channels, | |
bias=False) | |
if causal: | |
chomp = Chomp1d(padding) | |
prelu = nn.PReLU() | |
norm = chose_norm(norm_type, in_channels) | |
# [M, H, K] -> [M, B, K] | |
pointwise_conv = nn.Conv1d(in_channels, out_channels, 1, bias=False) | |
# Put together | |
if causal: | |
self.net = nn.Sequential(depthwise_conv, chomp, prelu, norm, pointwise_conv) | |
else: | |
self.net = nn.Sequential(depthwise_conv, prelu, norm, pointwise_conv) | |
def forward(self, x): | |
""" | |
Args: | |
x: [M, H, K] | |
Returns: | |
result: [M, B, K] | |
""" | |
return self.net(x) | |
class Chomp1d(nn.Module): | |
"""To ensure the output length is the same as the input. | |
""" | |
def __init__(self, chomp_size): | |
super(Chomp1d, self).__init__() | |
self.chomp_size = chomp_size | |
def forward(self, x): | |
""" | |
Args: | |
x: [M, H, Kpad] | |
Returns: | |
[M, H, K] | |
""" | |
return x[:, :, :-self.chomp_size].contiguous() | |
def chose_norm(norm_type, channel_size): | |
"""The input of normlization will be (M, C, K), where M is batch size, | |
C is channel size and K is sequence length. | |
""" | |
if norm_type == "gLN": | |
return GlobalLayerNorm(channel_size) | |
elif norm_type == "cLN": | |
return ChannelwiseLayerNorm(channel_size) | |
elif norm_type == "id": | |
return nn.Identity() | |
else: # norm_type == "BN": | |
# Given input (M, C, K), nn.BatchNorm1d(C) will accumulate statics | |
# along M and K, so this BN usage is right. | |
return nn.BatchNorm1d(channel_size) | |
# TODO: Use nn.LayerNorm to impl cLN to speed up | |
class ChannelwiseLayerNorm(nn.Module): | |
"""Channel-wise Layer Normalization (cLN)""" | |
def __init__(self, channel_size): | |
super(ChannelwiseLayerNorm, self).__init__() | |
self.gamma = nn.Parameter(torch.Tensor(1, channel_size, 1)) # [1, N, 1] | |
self.beta = nn.Parameter(torch.Tensor(1, channel_size, 1)) # [1, N, 1] | |
self.reset_parameters() | |
def reset_parameters(self): | |
self.gamma.data.fill_(1) | |
self.beta.data.zero_() | |
def forward(self, y): | |
""" | |
Args: | |
y: [M, N, K], M is batch size, N is channel size, K is length | |
Returns: | |
cLN_y: [M, N, K] | |
""" | |
mean = torch.mean(y, dim=1, keepdim=True) # [M, 1, K] | |
var = torch.var(y, dim=1, keepdim=True, unbiased=False) # [M, 1, K] | |
cLN_y = self.gamma * (y - mean) / torch.pow(var + EPS, 0.5) + self.beta | |
return cLN_y | |
class GlobalLayerNorm(nn.Module): | |
"""Global Layer Normalization (gLN)""" | |
def __init__(self, channel_size): | |
super(GlobalLayerNorm, self).__init__() | |
self.gamma = nn.Parameter(torch.Tensor(1, channel_size, 1)) # [1, N, 1] | |
self.beta = nn.Parameter(torch.Tensor(1, channel_size, 1)) # [1, N, 1] | |
self.reset_parameters() | |
def reset_parameters(self): | |
self.gamma.data.fill_(1) | |
self.beta.data.zero_() | |
def forward(self, y): | |
""" | |
Args: | |
y: [M, N, K], M is batch size, N is channel size, K is length | |
Returns: | |
gLN_y: [M, N, K] | |
""" | |
# TODO: in torch 1.0, torch.mean() support dim list | |
mean = y.mean(dim=1, keepdim=True).mean(dim=2, keepdim=True) # [M, 1, 1] | |
var = (torch.pow(y - mean, 2)).mean(dim=1, keepdim=True).mean(dim=2, keepdim=True) | |
gLN_y = self.gamma * (y - mean) / torch.pow(var + EPS, 0.5) + self.beta | |
return gLN_y | |
if __name__ == "__main__": | |
torch.manual_seed(123) | |
M, N, L, T = 2, 3, 4, 12 | |
K = 2 * T // L - 1 | |
B, H, P, X, R, C, norm_type, causal = 2, 3, 3, 3, 2, 2, "gLN", False | |
mixture = torch.randint(3, (M, T)) | |
# test Encoder | |
encoder = Encoder(L, N) | |
encoder.conv1d_U.weight.data = torch.randint(2, encoder.conv1d_U.weight.size()) | |
mixture_w = encoder(mixture) | |
print('mixture', mixture) | |
print('U', encoder.conv1d_U.weight) | |
print('mixture_w', mixture_w) | |
print('mixture_w size', mixture_w.size()) | |
# test TemporalConvNet | |
separator = TemporalConvNet(N, B, H, P, X, R, C, norm_type=norm_type, causal=causal) | |
est_mask = separator(mixture_w) | |
print('est_mask', est_mask) | |
# test Decoder | |
decoder = Decoder(N, L) | |
est_mask = torch.randint(2, (B, K, C, N)) | |
est_source = decoder(mixture_w, est_mask) | |
print('est_source', est_source) | |
# test Conv-TasNet | |
conv_tasnet = ConvTasNet(N, L, B, H, P, X, R, C, norm_type=norm_type) | |
est_source = conv_tasnet(mixture) | |
print('est_source', est_source) | |
print('est_source size', est_source.size()) | |