Spaces:
r3gm
/
Running

r3gm's picture
Upload 288 files
7bc29af
raw
history blame
11.1 kB
import contextlib
import importlib
import torch
import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import
# pylint: disable=protected-access, missing-function-docstring, line-too-long, unnecessary-lambda, no-else-return
class CondFunc: # pylint: disable=missing-class-docstring
def __new__(cls, orig_func, sub_func, cond_func):
self = super(CondFunc, cls).__new__(cls)
if isinstance(orig_func, str):
func_path = orig_func.split('.')
for i in range(len(func_path)-1, -1, -1):
try:
resolved_obj = importlib.import_module('.'.join(func_path[:i]))
break
except ImportError:
pass
for attr_name in func_path[i:-1]:
resolved_obj = getattr(resolved_obj, attr_name)
orig_func = getattr(resolved_obj, func_path[-1])
setattr(resolved_obj, func_path[-1], lambda *args, **kwargs: self(*args, **kwargs))
self.__init__(orig_func, sub_func, cond_func)
return lambda *args, **kwargs: self(*args, **kwargs)
def __init__(self, orig_func, sub_func, cond_func):
self.__orig_func = orig_func
self.__sub_func = sub_func
self.__cond_func = cond_func
def __call__(self, *args, **kwargs):
if not self.__cond_func or self.__cond_func(self.__orig_func, *args, **kwargs):
return self.__sub_func(self.__orig_func, *args, **kwargs)
else:
return self.__orig_func(*args, **kwargs)
_utils = torch.utils.data._utils
def _shutdown_workers(self):
if torch.utils.data._utils is None or torch.utils.data._utils.python_exit_status is True or torch.utils.data._utils.python_exit_status is None:
return
if hasattr(self, "_shutdown") and not self._shutdown:
self._shutdown = True
try:
if hasattr(self, '_pin_memory_thread'):
self._pin_memory_thread_done_event.set()
self._worker_result_queue.put((None, None))
self._pin_memory_thread.join()
self._worker_result_queue.cancel_join_thread()
self._worker_result_queue.close()
self._workers_done_event.set()
for worker_id in range(len(self._workers)):
if self._persistent_workers or self._workers_status[worker_id]:
self._mark_worker_as_unavailable(worker_id, shutdown=True)
for w in self._workers: # pylint: disable=invalid-name
w.join(timeout=torch.utils.data._utils.MP_STATUS_CHECK_INTERVAL)
for q in self._index_queues: # pylint: disable=invalid-name
q.cancel_join_thread()
q.close()
finally:
if self._worker_pids_set:
torch.utils.data._utils.signal_handling._remove_worker_pids(id(self))
self._worker_pids_set = False
for w in self._workers: # pylint: disable=invalid-name
if w.is_alive():
w.terminate()
class DummyDataParallel(torch.nn.Module): # pylint: disable=missing-class-docstring, unused-argument, too-few-public-methods
def __new__(cls, module, device_ids=None, output_device=None, dim=0): # pylint: disable=unused-argument
if isinstance(device_ids, list) and len(device_ids) > 1:
print("IPEX backend doesn't support DataParallel on multiple XPU devices")
return module.to("xpu")
def return_null_context(*args, **kwargs): # pylint: disable=unused-argument
return contextlib.nullcontext()
def check_device(device):
return bool((isinstance(device, torch.device) and device.type == "cuda") or (isinstance(device, str) and "cuda" in device) or isinstance(device, int))
def return_xpu(device):
return f"xpu:{device[-1]}" if isinstance(device, str) and ":" in device else f"xpu:{device}" if isinstance(device, int) else torch.device("xpu") if isinstance(device, torch.device) else "xpu"
def ipex_no_cuda(orig_func, *args, **kwargs):
torch.cuda.is_available = lambda: False
orig_func(*args, **kwargs)
torch.cuda.is_available = torch.xpu.is_available
original_autocast = torch.autocast
def ipex_autocast(*args, **kwargs):
if len(args) > 0 and args[0] == "cuda":
return original_autocast("xpu", *args[1:], **kwargs)
else:
return original_autocast(*args, **kwargs)
original_torch_cat = torch.cat
def torch_cat(tensor, *args, **kwargs):
if len(tensor) == 3 and (tensor[0].dtype != tensor[1].dtype or tensor[2].dtype != tensor[1].dtype):
return original_torch_cat([tensor[0].to(tensor[1].dtype), tensor[1], tensor[2].to(tensor[1].dtype)], *args, **kwargs)
else:
return original_torch_cat(tensor, *args, **kwargs)
original_interpolate = torch.nn.functional.interpolate
def interpolate(tensor, size=None, scale_factor=None, mode='nearest', align_corners=None, recompute_scale_factor=None, antialias=False): # pylint: disable=too-many-arguments
if antialias or align_corners is not None:
return_device = tensor.device
return_dtype = tensor.dtype
return original_interpolate(tensor.to("cpu", dtype=torch.float32), size=size, scale_factor=scale_factor, mode=mode,
align_corners=align_corners, recompute_scale_factor=recompute_scale_factor, antialias=antialias).to(return_device, dtype=return_dtype)
else:
return original_interpolate(tensor, size=size, scale_factor=scale_factor, mode=mode,
align_corners=align_corners, recompute_scale_factor=recompute_scale_factor, antialias=antialias)
original_linalg_solve = torch.linalg.solve
def linalg_solve(A, B, *args, **kwargs): # pylint: disable=invalid-name
if A.device != torch.device("cpu") or B.device != torch.device("cpu"):
return_device = A.device
return original_linalg_solve(A.to("cpu"), B.to("cpu"), *args, **kwargs).to(return_device)
else:
return original_linalg_solve(A, B, *args, **kwargs)
def ipex_hijacks():
CondFunc('torch.Tensor.to',
lambda orig_func, self, device=None, *args, **kwargs: orig_func(self, return_xpu(device), *args, **kwargs),
lambda orig_func, self, device=None, *args, **kwargs: check_device(device))
CondFunc('torch.Tensor.cuda',
lambda orig_func, self, device=None, *args, **kwargs: orig_func(self, return_xpu(device), *args, **kwargs),
lambda orig_func, self, device=None, *args, **kwargs: check_device(device))
CondFunc('torch.empty',
lambda orig_func, *args, device=None, **kwargs: orig_func(*args, device=return_xpu(device), **kwargs),
lambda orig_func, *args, device=None, **kwargs: check_device(device))
CondFunc('torch.load',
lambda orig_func, *args, map_location=None, **kwargs: orig_func(*args, return_xpu(map_location), **kwargs),
lambda orig_func, *args, map_location=None, **kwargs: map_location is None or check_device(map_location))
CondFunc('torch.randn',
lambda orig_func, *args, device=None, **kwargs: orig_func(*args, device=return_xpu(device), **kwargs),
lambda orig_func, *args, device=None, **kwargs: check_device(device))
CondFunc('torch.ones',
lambda orig_func, *args, device=None, **kwargs: orig_func(*args, device=return_xpu(device), **kwargs),
lambda orig_func, *args, device=None, **kwargs: check_device(device))
CondFunc('torch.zeros',
lambda orig_func, *args, device=None, **kwargs: orig_func(*args, device=return_xpu(device), **kwargs),
lambda orig_func, *args, device=None, **kwargs: check_device(device))
CondFunc('torch.tensor',
lambda orig_func, *args, device=None, **kwargs: orig_func(*args, device=return_xpu(device), **kwargs),
lambda orig_func, *args, device=None, **kwargs: check_device(device))
CondFunc('torch.linspace',
lambda orig_func, *args, device=None, **kwargs: orig_func(*args, device=return_xpu(device), **kwargs),
lambda orig_func, *args, device=None, **kwargs: check_device(device))
CondFunc('torch.Generator',
lambda orig_func, device=None: torch.xpu.Generator(device),
lambda orig_func, device=None: device is not None and device != torch.device("cpu") and device != "cpu")
CondFunc('torch.batch_norm',
lambda orig_func, input, weight, bias, *args, **kwargs: orig_func(input,
weight if weight is not None else torch.ones(input.size()[1], device=input.device),
bias if bias is not None else torch.zeros(input.size()[1], device=input.device), *args, **kwargs),
lambda orig_func, input, *args, **kwargs: input.device != torch.device("cpu"))
CondFunc('torch.instance_norm',
lambda orig_func, input, weight, bias, *args, **kwargs: orig_func(input,
weight if weight is not None else torch.ones(input.size()[1], device=input.device),
bias if bias is not None else torch.zeros(input.size()[1], device=input.device), *args, **kwargs),
lambda orig_func, input, *args, **kwargs: input.device != torch.device("cpu"))
#Functions with dtype errors:
CondFunc('torch.nn.modules.GroupNorm.forward',
lambda orig_func, self, input: orig_func(self, input.to(self.weight.data.dtype)),
lambda orig_func, self, input: input.dtype != self.weight.data.dtype)
CondFunc('torch.nn.modules.linear.Linear.forward',
lambda orig_func, self, input: orig_func(self, input.to(self.weight.data.dtype)),
lambda orig_func, self, input: input.dtype != self.weight.data.dtype)
CondFunc('torch.nn.modules.conv.Conv2d.forward',
lambda orig_func, self, input: orig_func(self, input.to(self.weight.data.dtype)),
lambda orig_func, self, input: input.dtype != self.weight.data.dtype)
CondFunc('torch.nn.functional.layer_norm',
lambda orig_func, input, normalized_shape=None, weight=None, *args, **kwargs:
orig_func(input.to(weight.data.dtype), normalized_shape, weight, *args, **kwargs),
lambda orig_func, input, normalized_shape=None, weight=None, *args, **kwargs:
weight is not None and input.dtype != weight.data.dtype)
#Diffusers Float64 (ARC GPUs doesn't support double or Float64):
if not torch.xpu.has_fp64_dtype():
CondFunc('torch.from_numpy',
lambda orig_func, ndarray: orig_func(ndarray.astype('float32')),
lambda orig_func, ndarray: ndarray.dtype == float)
#Broken functions when torch.cuda.is_available is True:
CondFunc('torch.utils.data.dataloader._BaseDataLoaderIter.__init__',
lambda orig_func, *args, **kwargs: ipex_no_cuda(orig_func, *args, **kwargs),
lambda orig_func, *args, **kwargs: True)
#Functions that make compile mad with CondFunc:
torch.utils.data.dataloader._MultiProcessingDataLoaderIter._shutdown_workers = _shutdown_workers
torch.nn.DataParallel = DummyDataParallel
torch.autocast = ipex_autocast
torch.cat = torch_cat
torch.linalg.solve = linalg_solve
torch.nn.functional.interpolate = interpolate
torch.backends.cuda.sdp_kernel = return_null_context