|
from sumy.parsers.plaintext import PlaintextParser |
|
from sumy.nlp.tokenizers import Tokenizer |
|
from sumy.summarizers.text_rank import TextRankSummarizer |
|
from sumy.summarizers.luhn import LuhnSummarizer |
|
from sumy.summarizers.lsa import LsaSummarizer |
|
from sumy.nlp.stemmers import Stemmer |
|
from sumy.utils import get_stop_words |
|
import nltk |
|
from tools import extract_text_from_pdf |
|
|
|
LANGUAGE = "english" |
|
SENTENCES_COUNT = 10 |
|
|
|
def generate_textrank_summary(research_paper_text): |
|
nltk.download('punkt', quiet=True) |
|
nltk.download('punkt_tab', quiet=True) |
|
parser = PlaintextParser.from_string(research_paper_text, Tokenizer(LANGUAGE)) |
|
stemmer = Stemmer(LANGUAGE) |
|
summarizer = TextRankSummarizer(stemmer) |
|
summarizer.stop_words = get_stop_words(LANGUAGE) |
|
sentences = summarizer(parser.document, SENTENCES_COUNT) |
|
summary = "" |
|
for sentence in sentences: |
|
summary += str(sentence) + "" |
|
return summary |
|
|
|
def generate_luhn_summary(research_paper_text): |
|
nltk.download('punkt', quiet=True) |
|
nltk.download('punkt_tab', quiet=True) |
|
parser = PlaintextParser.from_string(research_paper_text, Tokenizer(LANGUAGE)) |
|
stemmer = Stemmer(LANGUAGE) |
|
summarizer = LuhnSummarizer(stemmer) |
|
summarizer.stop_words = get_stop_words(LANGUAGE) |
|
sentences = summarizer(parser.document, SENTENCES_COUNT) |
|
summary = "" |
|
for sentence in sentences: |
|
summary += str(sentence) + "" |
|
return summary |
|
|
|
def generate_lsa_summary(research_paper_text): |
|
nltk.download('punkt', quiet=True) |
|
nltk.download('punkt_tab', quiet=True) |
|
parser = PlaintextParser.from_string(research_paper_text, Tokenizer(LANGUAGE)) |
|
stemmer = Stemmer(LANGUAGE) |
|
summarizer = LsaSummarizer(stemmer) |
|
summarizer.stop_words = get_stop_words(LANGUAGE) |
|
sentences = summarizer(parser.document, SENTENCES_COUNT) |
|
summary = "" |
|
for sentence in sentences: |
|
summary += str(sentence) + "" |
|
return summary |
|
|
|
def generate_temp_summary(pdf_path): |
|
research_paper_text, length_of_research_paper = extract_text_from_pdf(pdf_path) |
|
textrank_summary = generate_textrank_summary(research_paper_text) |
|
luhn_summary = generate_luhn_summary(research_paper_text) |
|
lsa_summary = generate_lsa_summary(research_paper_text) |
|
temp_summary = textrank_summary.replace("\n", "") + luhn_summary.replace("\n", "") + lsa_summary.replace("\n", "") |
|
return temp_summary, length_of_research_paper |
|
|