from functools import partial from tools import load_llm_model import gradio as gr from main import summarize import subprocess import os theme = gr.themes.Soft( primary_hue="purple", secondary_hue="cyan", neutral_hue="slate", font=[ gr.themes.GoogleFont('Syne'), gr.themes.GoogleFont('Poppins'), gr.themes.GoogleFont('Poppins'), gr.themes.GoogleFont('Poppins') ], ) def clear_everything(pdf_file, summary_output, info): pdf_file = None summary_output = None info = None return pdf_file, summary_output, info print("Loading LLM model...") llm = load_llm_model() print("Building app...") summarize_with_llm = partial(summarize, llm) with gr.Blocks(theme=theme, title="Hybrid Research Paper Summarizer", fill_height=True) as app: gr.HTML( value ='''
This app uses a hybrid approach to summarize PDF documents completely based on CPU.
The app uses traditional methodologies such as TextRank, LSA, Luhn algorithms as well as quantized large language model (LLM) to generate summaries of the PDF document.
The summarization process can take some time depending on the size of the PDF document and the complexity of the content.
''') with gr.Column(): with gr.Row(): pdf_file = gr.File(label="Upload PDF", file_types=['.pdf']) with gr.Column(): with gr.Row(): summarize_btn = gr.Button(value="Summarize") clear_btn = gr.Button(value="Clear") info = gr.Textbox(label="Summarization Info", placeholder="Details regarding summarization will be shown here", interactive=False) summary_output = gr.TextArea(label="PDF Summary", placeholder="The summary will be displayed here", interactive=False, show_copy_button=True) summarize_btn.click( summarize_with_llm, inputs=pdf_file, outputs=[summary_output, info], concurrency_limit=5, scroll_to_output=True, api_name="summarize", show_progress="full", max_batch_size=10, ) clear_btn.click(clear_everything, inputs=[pdf_file, summary_output, info], outputs=[pdf_file, summary_output, info], show_api=False) print("Build Successful. Launching app...") app.queue(default_concurrency_limit=5).launch(show_api=True)