Spaces:
Runtime error
Runtime error
File size: 2,644 Bytes
7d81e6b 6bab54c 6b9b713 6bab54c 6b9b713 7d81e6b 6bab54c 7d81e6b 76e5451 7d81e6b 76e5451 7d81e6b 6bab54c e7d3e05 052fd21 73ab6a3 052fd21 6b9b713 052fd21 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
import gradio as gr
from transformers import AutoModel, AutoTokenizer
from sklearn.neighbors import NearestNeighbors
available_models = ['2019',
'2020']
model_2019 = AutoModel.from_pretrained('cardiffnlp/twitter-roberta-base-2019-90m')
tokenizers_2019 = AutoTokenizer.from_pretrained('cardiffnlp/twitter-roberta-base-2019-90m')
embedding_matrix_2019 = model_2019.embeddings.word_embeddings.weight
embedding_matrix_2019 = embedding_matrix_2019.detach().numpy()
knn_model_2019 = NearestNeighbors(n_neighbors=500,
metric='cosine',
algorithm='auto',
n_jobs=3)
nbrs_2019 = knn_model_2019.fit(embedding_matrix_2019)
distances_2019, indices_2019 = nbrs_2019.kneighbors(embedding_matrix_2019)
model_2020 = AutoModel.from_pretrained('cardiffnlp/twitter-roberta-base-jun2020')
tokenizers_2020 = AutoTokenizer.from_pretrained('cardiffnlp/twitter-roberta-base-jun2020')
embedding_matrix_2020 = model_2020.embeddings.word_embeddings.weight
embedding_matrix_2020 = embedding_matrix_2020.detach().numpy()
knn_model_2020 = NearestNeighbors(n_neighbors=500,
metric='cosine',
algorithm='auto',
n_jobs=3)
nbrs_2020 = knn_model_2020.fit(embedding_matrix_2020)
distances_2020, indices_2020 = nbrs_2020.kneighbors(embedding_matrix_2020)
title = "How does a word's meaning change with time?"
def topk(word,model):
outs = []
if model == '2019':
index = tokenizers_2019.encode(f'{word}')
for i in indices_2019[index[1]]:
outs.append(tokenizers_2019.decode(i))
print(tokenizers_2019.decode(i))
return outs
if model == '2020':
index = tokenizers_2020.encode(f'{word}')
for i in indices_2020[index[1]]:
outs.append(tokenizers_2020.decode(i))
print(tokenizers_2020.decode(i))
return outs
# with gr.Blocks() as demo:
# gr.Markdown(f" # {title}")
# # gr.Markdown(f" ## {description1}")
# # gr.Markdown(f"{description2}")
# # gr.Markdown(f"{description3}")
# with gr.Row():
# word = gr.Textbox(label="Word")
# with gr.Row():
# greet_btn = gr.Button("Compute")
# with gr.Row():
# greet_btn.click(fn=topk, inputs=[word,gr.Dropdown(models)], outputs=gr.outputs.Textbox())
# demo.launch()
interface = gr.Interface(fn=topk,
inputs=[gr.Textbox(label="Word"), gr.Dropdown(available_models)],
outputs=gr.outputs.Textbox()
)
interface.launch() |