File size: 13,719 Bytes
01f754d
 
 
 
 
 
 
 
8f38df6
 
01f754d
 
 
 
 
 
 
 
 
 
a6a4802
01f754d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccbe9af
 
 
 
 
 
 
770477f
01f754d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
930d4a2
 
01f754d
 
 
 
 
 
 
 
 
 
 
930d4a2
 
 
 
01f754d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccbe9af
 
 
 
 
 
 
 
01f754d
 
 
a039226
01f754d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccbe9af
01f754d
 
 
 
 
 
ccbe9af
01f754d
 
 
 
 
 
a039226
01f754d
 
ccbe9af
c71c210
ccbe9af
01f754d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a039226
 
 
 
ccbe9af
a039226
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccbe9af
a039226
 
ccbe9af
a039226
 
 
 
01f754d
 
ccbe9af
01f754d
 
 
 
 
ccbe9af
01f754d
ccbe9af
01f754d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccbe9af
01f754d
 
 
 
 
ccbe9af
01f754d
 
 
 
 
 
 
8f38df6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
<html>
  <head>
    <meta content="text/html;charset=utf-8" http-equiv="Content-Type" />
    <title>Candle Bert</title>
  </head>
  <body></body>
</html>

<!DOCTYPE html>
<html>
  <head>
    <meta charset="UTF-8" />
    <meta name="viewport" content="width=device-width, initial-scale=1.0" />
    <style>
      @import url("https://fonts.googleapis.com/css2?family=Source+Code+Pro:wght@200;300;400&family=Source+Sans+3:wght@100;200;300;400;500;600;700;800;900&display=swap");
      html,
      body {
        font-family: "Source Sans 3", sans-serif;
      }
    </style>
    <script src="https://cdnjs.cloudflare.com/ajax/libs/iframe-resizer/4.3.1/iframeResizer.contentWindow.min.js"></script>
    <script src="https://cdn.tailwindcss.com"></script>
    <script type="module" src="./code.js"></script>
    <script type="module">
      import { hcl } from "https://cdn.skypack.dev/d3-color@3";
      import { interpolateReds } from "https://cdn.skypack.dev/d3-scale-chromatic@3";
      import { scaleLinear } from "https://cdn.skypack.dev/d3-scale@4";
      import {
        getModelInfo,
        getEmbeddings,
        getWikiText,
        cosineSimilarity,
      } from "./utils.js";

      const bertWorker = new Worker("./bertWorker.js", {
        type: "module",
      });

      const inputContainerEL = document.querySelector("#input-container");
      const textAreaEl = document.querySelector("#input-area");
      const outputAreaEl = document.querySelector("#output-area");
      const formEl = document.querySelector("#form");
      const searchInputEl = document.querySelector("#search-input");
      const formWikiEl = document.querySelector("#form-wiki");
      const searchWikiEl = document.querySelector("#search-wiki");
      const outputStatusEl = document.querySelector("#output-status");
      const modelSelectEl = document.querySelector("#model");

      const sentencesRegex =
        /(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<![A-Z]\.)(?<=\.|\?)\s/gm;

      let sentenceEmbeddings = [];
      let currInputText = "";
      let isCalculating = false;

      function toggleTextArea(state) {
        if (state) {
          textAreaEl.hidden = false;
          textAreaEl.focus();
        } else {
          textAreaEl.hidden = true;
        }
      }
      inputContainerEL.addEventListener("focus", (e) => {
        toggleTextArea(true);
      });
      textAreaEl.addEventListener("blur", (e) => {
        toggleTextArea(false);
      });
      textAreaEl.addEventListener("focusout", (e) => {
        toggleTextArea(false);
        if (currInputText === textAreaEl.value || isCalculating) return;
        populateOutputArea(textAreaEl.value);
        calculateEmbeddings(textAreaEl.value);
      });

      modelSelectEl.addEventListener("change", (e) => {
        const query = new URLSearchParams(window.location.search);
        query.set("model", modelSelectEl.value);
        window.history.replaceState(
          {},
          "",
          `${window.location.pathname}?${query}`
        );
        window.parent.postMessage({ queryString: "?" + query }, "*")
        if (currInputText === "" || isCalculating) return;
        populateOutputArea(textAreaEl.value);
        calculateEmbeddings(textAreaEl.value);
      });

      function populateOutputArea(text) {
        currInputText = text;
        const sentences = text.split(sentencesRegex);

        outputAreaEl.innerHTML = "";
        for (const [id, sentence] of sentences.entries()) {
          const sentenceEl = document.createElement("span");
          sentenceEl.id = `sentence-${id}`;
          sentenceEl.innerText = sentence + " ";
          outputAreaEl.appendChild(sentenceEl);
        }
      }
      formEl.addEventListener("submit", async (e) => {
        e.preventDefault();
        if (isCalculating || currInputText === "") return;
        toggleInputs(true);
        const modelID = modelSelectEl.value;
        const { modelURL, tokenizerURL, configURL, search_prefix } =
          getModelInfo(modelID);

        const text = searchInputEl.value;
        const query = search_prefix + searchInputEl.value;
        outputStatusEl.classList.remove("invisible");
        outputStatusEl.innerText = "Calculating embeddings for query...";
        isCalculating = true;
        const out = await getEmbeddings(
          bertWorker,
          modelURL,
          tokenizerURL,
          configURL,
          modelID,
          [query]
        );
        outputStatusEl.classList.add("invisible");
        const queryEmbeddings = out.output[0];
        // calculate cosine similarity with all sentences given the query
        const distances = sentenceEmbeddings
          .map((embedding, id) => ({
            id,
            similarity: cosineSimilarity(queryEmbeddings, embedding),
          }))
          .sort((a, b) => b.similarity - a.similarity)
          // getting top 10 most similar sentences
          .slice(0, 10);

        const colorScale = scaleLinear()
          .domain([
            distances[distances.length - 1].similarity,
            distances[0].similarity,
          ])
          .range([0, 1])
          .interpolate(() => interpolateReds);
        outputAreaEl.querySelectorAll("span").forEach((el) => {
          el.style.color = "unset";
          el.style.backgroundColor = "unset";
        });
        distances.forEach((d) => {
          const el = outputAreaEl.querySelector(`#sentence-${d.id}`);
          const color = colorScale(d.similarity);
          const fontColor = hcl(color).l < 70 ? "white" : "black";
          el.style.color = fontColor;
          el.style.backgroundColor = color;
        });

        outputAreaEl
          .querySelector(`#sentence-${distances[0].id}`)
          .scrollIntoView({
            behavior: "smooth",
            block: "center",
            inline: "nearest",
          });

        isCalculating = false;
        toggleInputs(false);
      });
      async function calculateEmbeddings(text) {
        isCalculating = true;
        toggleInputs(true);
        const modelID = modelSelectEl.value;
        const { modelURL, tokenizerURL, configURL, document_prefix } =
          getModelInfo(modelID);

        const sentences = text.split(sentencesRegex);
        const allEmbeddings = [];
        outputStatusEl.classList.remove("invisible");
        for (const [id, sentence] of sentences.entries()) {
          const query = document_prefix + sentence;
          outputStatusEl.innerText = `Calculating embeddings: sentence ${
            id + 1
          } of ${sentences.length}`;
          const embeddings = await getEmbeddings(
            bertWorker,
            modelURL,
            tokenizerURL,
            configURL,
            modelID,
            [query],
            updateStatus
          );
          allEmbeddings.push(embeddings);
        }
        outputStatusEl.classList.add("invisible");
        sentenceEmbeddings = allEmbeddings.map((e) => e.output[0]);
        isCalculating = false;
        toggleInputs(false);
      }

      function updateStatus(data) {
        if ("status" in data) {
          if (data.status === "loading") {
            outputStatusEl.innerText = data.message;
            outputStatusEl.classList.remove("invisible");
          }
        }
      }
      function toggleInputs(state) {
        const interactive = document.querySelectorAll(".interactive");
        interactive.forEach((el) => {
          if (state) {
            el.disabled = true;
          } else {
            el.disabled = false;
          }
        });
      }

      searchWikiEl.addEventListener("input", () => {
        searchWikiEl.setCustomValidity("");
      });

      formWikiEl.addEventListener("submit", async (e) => {
        e.preventDefault();
        if ("example" in e.submitter.dataset) {
          searchWikiEl.value = e.submitter.innerText;
        }
        const text = searchWikiEl.value;

        if (isCalculating || text === "") return;
        try {
          const wikiText = await getWikiText(text);
          searchWikiEl.setCustomValidity("");
          textAreaEl.innerHTML = wikiText;
          populateOutputArea(wikiText);
          calculateEmbeddings(wikiText);
          searchWikiEl.value = "";
        } catch {
          searchWikiEl.setCustomValidity("Invalid Wikipedia article name");
          searchWikiEl.reportValidity();
        }
      });
      document.addEventListener("DOMContentLoaded", () => {
        const query = new URLSearchParams(window.location.search);
        const modelID = query.get("model");
        if (modelID) {
          modelSelectEl.value = modelID;
          modelSelectEl.dispatchEvent(new Event("change"));
        }
      });
    </script>
  </head>
  <body class="container max-w-4xl mx-auto p-4">
    <main class="grid grid-cols-1 gap-5 relative">
      <span class="absolute text-5xl -ml-[1em]"> 🕯️ </span>
      <div>
        <h1 class="text-5xl font-bold">Candle BERT</h1>
        <h2 class="text-2xl font-bold">Rust/WASM Demo</h2>
        <p class="max-w-lg">
          Running sentence embeddings and similarity search in the browser using
          the Bert Model written with
          <a
            href="https://github.com/huggingface/candle/"
            target="_blank"
            class="underline hover:text-blue-500 hover:no-underline"
            >Candle
          </a>
          and compiled to Wasm. Embeddings models from are from
          <a
            href="https://huggingface.co/sentence-transformers/"
            target="_blank"
            class="underline hover:text-blue-500 hover:no-underline">
            Sentence Transformers
          </a>
          and
          <a
            href="https://huggingface.co/intfloat/"
            target="_blank"
            class="underline hover:text-blue-500 hover:no-underline">
            Liang Wang - e5 Models
          </a>
        </p>
      </div>

      <div>
        <label for="model" class="font-medium block">Models Options: </label>
        <select
          id="model"
          class="border-2 border-gray-500 rounded-md font-light interactive disabled:cursor-not-allowed w-full max-w-max">
          <option value="bge_micro">bge_micro (34.8 MB)</option>
          <option value="gte_tiny">gte_tiny (45.5 MB)</option>
          <option value="intfloat_e5_small_v2" selected>
            intfloat/e5-small-v2 (133 MB)
          </option>
          <option value="intfloat_e5_base_v2">
            intfloat/e5-base-v2 (438 MB)
          </option>
          <option value="intfloat_multilingual_e5_small">
            intfloat/multilingual-e5-small (471 MB)
          </option>
          <option value="sentence_transformers_all_MiniLM_L6_v2">
            sentence-transformers/all-MiniLM-L6-v2 (90.9 MB)
          </option>
          <option value="sentence_transformers_all_MiniLM_L12_v2">
            sentence-transformers/all-MiniLM-L12-v2 (133 MB)
          </option>
        </select>
      </div>
      <div>
        <h3 class="font-medium">Examples:</h3>
        <form
          id="form-wiki"
          class="flex text-xs rounded-md justify-between w-min gap-3">
          <input type="submit" hidden />

          <button data-example class="disabled:cursor-not-allowed interactive">
            Pizza
          </button>
          <button data-example class="disabled:cursor-not-allowed interactive">
            Paris
          </button>
          <button data-example class="disabled:cursor-not-allowed interactive">
            Physics
          </button>
          <input
            type="text"
            id="search-wiki"
            title="Search Wikipedia article by title"
            class="font-light py-0 mx-1 resize-none outline-none w-32 disabled:cursor-not-allowed interactive"
            placeholder="Load Wikipedia article..." />
          <button
            title="Search Wikipedia article and load into input"
            class="bg-gray-700 hover:bg-gray-800 text-white font-normal px-2 py-1 rounded disabled:bg-gray-300 disabled:cursor-not-allowed interactive">
            Load
          </button>
        </form>
      </div>
      <form
        id="form"
        class="flex text-normal px-1 py-1 border border-gray-700 rounded-md items-center">
        <input type="submit" hidden />
        <input
          type="text"
          id="search-input"
          class="font-light w-full px-3 py-2 mx-1 resize-none outline-none interactive disabled:cursor-not-allowed"
          placeholder="Search query here..." />
        <button
          class="bg-gray-700 hover:bg-gray-800 text-white font-normal py-2 w-16 rounded disabled:bg-gray-300 disabled:cursor-not-allowed interactive">
          Search
        </button>
      </form>
      <div>
        <h3 class="font-medium">Input text:</h3>
        <div class="flex justify-between items-center">
          <div class="rounded-md inline text-xs">
            <span id="output-status" class="m-auto font-light invisible"
              >C</span
            >
          </div>
        </div>
        <div
          id="input-container"
          tabindex="0"
          class="min-h-[250px] bg-slate-100 text-gray-500 rounded-md p-4 flex flex-col gap-2 relative">
          <textarea
            id="input-area"
            hidden
            value=""
            placeholder="Input text to perform semantic similarity search..."
            class="flex-1 resize-none outline-none left-0 right-0 top-0 bottom-0 m-4 absolute interactive disabled:invisible"></textarea>
          <p id="output-area" class="grid-rows-2">
            Input text to perform semantic similarity search...
          </p>
        </div>
      </div>
    </main>
  </body>
</html>