radames's picture
Update index.html
f33269b
raw
history blame
13.7 kB
<html>
<head>
<meta content="text/html;charset=utf-8" http-equiv="Content-Type" />
<title>Candle Bert</title>
</head>
<body></body>
</html>
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<style>
@import url("https://fonts.googleapis.com/css2?family=Source+Code+Pro:wght@200;300;400&family=Source+Sans+3:wght@100;200;300;400;500;600;700;800;900&display=swap");
html,
body {
font-family: "Source Sans 3", sans-serif;
}
</style>
<script src="https://cdnjs.cloudflare.com/ajax/libs/iframe-resizer/4.3.1/iframeResizer.contentWindow.min.js"></script>
<script src="https://cdn.tailwindcss.com"></script>
<script type="module" src="./code.js"></script>
<script type="module">
import { hcl } from "https://cdn.skypack.dev/d3-color@3";
import { interpolateReds } from "https://cdn.skypack.dev/d3-scale-chromatic@3";
import { scaleLinear } from "https://cdn.skypack.dev/d3-scale@4";
import {
getModelInfo,
getEmbeddings,
getWikiText,
cosineSimilarity,
} from "./utils.js";
const bertWorker = new Worker("./bertWorker.js", {
type: "module",
});
const inputContainerEL = document.querySelector("#input-container");
const textAreaEl = document.querySelector("#input-area");
const outputAreaEl = document.querySelector("#output-area");
const formEl = document.querySelector("#form");
const searchInputEl = document.querySelector("#search-input");
const formWikiEl = document.querySelector("#form-wiki");
const searchWikiEl = document.querySelector("#search-wiki");
const outputStatusEl = document.querySelector("#output-status");
const modelSelectEl = document.querySelector("#model");
const sentencesRegex =
/(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<![A-Z]\.)(?<=\.|\?)\s/gm;
let sentenceEmbeddings = [];
let currInputText = "";
let isCalculating = false;
function toggleTextArea(state) {
if (state) {
textAreaEl.hidden = false;
textAreaEl.focus();
} else {
textAreaEl.hidden = true;
}
}
inputContainerEL.addEventListener("focus", (e) => {
toggleTextArea(true);
});
textAreaEl.addEventListener("blur", (e) => {
toggleTextArea(false);
});
textAreaEl.addEventListener("focusout", (e) => {
toggleTextArea(false);
if (currInputText === textAreaEl.value || isCalculating) return;
populateOutputArea(textAreaEl.value);
calculateEmbeddings(textAreaEl.value);
});
modelSelectEl.addEventListener("change", (e) => {
const query = new URLSearchParams(window.location.search);
query.set("model", modelSelectEl.value);
window.history.replaceState(
{},
"",
`${window.location.pathname}?${query}`
);
window.parent.postMessage({ queryString: "?" + query }, "*")
if (currInputText === "" || isCalculating) return;
populateOutputArea(textAreaEl.value);
calculateEmbeddings(textAreaEl.value);
});
function populateOutputArea(text) {
currInputText = text;
const sentences = text.split(sentencesRegex);
outputAreaEl.innerHTML = "";
for (const [id, sentence] of sentences.entries()) {
const sentenceEl = document.createElement("span");
sentenceEl.id = `sentence-${id}`;
sentenceEl.innerText = sentence + " ";
outputAreaEl.appendChild(sentenceEl);
}
}
formEl.addEventListener("submit", async (e) => {
e.preventDefault();
if (isCalculating || currInputText === "") return;
toggleInputs(true);
const modelID = modelSelectEl.value;
const { modelURL, tokenizerURL, configURL, search_prefix } =
getModelInfo(modelID);
const text = searchInputEl.value;
const query = search_prefix + searchInputEl.value;
outputStatusEl.classList.remove("invisible");
outputStatusEl.innerText = "Calculating embeddings for query...";
isCalculating = true;
const out = await getEmbeddings(
bertWorker,
modelURL,
tokenizerURL,
configURL,
modelID,
[query]
);
outputStatusEl.classList.add("invisible");
const queryEmbeddings = out.output[0];
// calculate cosine similarity with all sentences given the query
const distances = sentenceEmbeddings
.map((embedding, id) => ({
id,
similarity: cosineSimilarity(queryEmbeddings, embedding),
}))
.sort((a, b) => b.similarity - a.similarity)
// getting top 10 most similar sentences
.slice(0, 10);
const colorScale = scaleLinear()
.domain([
distances[distances.length - 1].similarity,
distances[0].similarity,
])
.range([0, 1])
.interpolate(() => interpolateReds);
outputAreaEl.querySelectorAll("span").forEach((el) => {
el.style.color = "unset";
el.style.backgroundColor = "unset";
});
distances.forEach((d) => {
const el = outputAreaEl.querySelector(`#sentence-${d.id}`);
const color = colorScale(d.similarity);
const fontColor = hcl(color).l < 70 ? "white" : "black";
el.style.color = fontColor;
el.style.backgroundColor = color;
});
outputAreaEl
.querySelector(`#sentence-${distances[0].id}`)
.scrollIntoView({
behavior: "smooth",
block: "center",
inline: "nearest",
});
isCalculating = false;
toggleInputs(false);
});
async function calculateEmbeddings(text) {
isCalculating = true;
toggleInputs(true);
const modelID = modelSelectEl.value;
const { modelURL, tokenizerURL, configURL, document_prefix } =
getModelInfo(modelID);
const sentences = text.split(sentencesRegex);
const allEmbeddings = [];
outputStatusEl.classList.remove("invisible");
for (const [id, sentence] of sentences.entries()) {
const query = document_prefix + sentence;
outputStatusEl.innerText = `Calculating embeddings: sentence ${
id + 1
} of ${sentences.length}`;
const embeddings = await getEmbeddings(
bertWorker,
modelURL,
tokenizerURL,
configURL,
modelID,
[query],
updateStatus
);
allEmbeddings.push(embeddings);
}
outputStatusEl.classList.add("invisible");
sentenceEmbeddings = allEmbeddings.map((e) => e.output[0]);
isCalculating = false;
toggleInputs(false);
}
function updateStatus(data) {
if ("status" in data) {
if (data.status === "loading") {
outputStatusEl.innerText = data.message;
outputStatusEl.classList.remove("invisible");
}
}
}
function toggleInputs(state) {
const interactive = document.querySelectorAll(".interactive");
interactive.forEach((el) => {
if (state) {
el.disabled = true;
} else {
el.disabled = false;
}
});
}
searchWikiEl.addEventListener("input", () => {
searchWikiEl.setCustomValidity("");
});
formWikiEl.addEventListener("submit", async (e) => {
e.preventDefault();
if ("example" in e.submitter.dataset) {
searchWikiEl.value = e.submitter.innerText;
}
const text = searchWikiEl.value;
if (isCalculating || text === "") return;
try {
const wikiText = await getWikiText(text);
searchWikiEl.setCustomValidity("");
textAreaEl.innerHTML = wikiText;
populateOutputArea(wikiText);
calculateEmbeddings(wikiText);
searchWikiEl.value = "";
} catch {
searchWikiEl.setCustomValidity("Invalid Wikipedia article name");
searchWikiEl.reportValidity();
}
});
document.addEventListener("DOMContentLoaded", () => {
const query = new URLSearchParams(window.location.search);
const modelID = query.get("model");
if (modelID) {
modelSelectEl.value = modelID;
modelSelectEl.dispatchEvent(new Event("change"));
}
});
</script>
</head>
<body class="container max-w-4xl mx-auto p-4">
<main class="grid grid-cols-1 gap-5 relative">
<span class="absolute text-5xl -ml-[1em]"> 🕯️ </span>
<div>
<h1 class="text-5xl font-bold">Candle BERT</h1>
<h2 class="text-2xl font-bold">Rust/WASM Demo</h2>
<p class="max-w-lg">
Running sentence embeddings and similarity search in the browser using
the Bert Model written with
<a
href="https://github.com/huggingface/candle/"
target="_blank"
class="underline hover:text-blue-500 hover:no-underline"
>Candle
</a>
and compiled to Wasm. Embeddings models from are from
<a
href="https://huggingface.co/sentence-transformers/"
target="_blank"
class="underline hover:text-blue-500 hover:no-underline">
Sentence Transformers
</a>
and
<a
href="https://huggingface.co/intfloat/"
target="_blank"
class="underline hover:text-blue-500 hover:no-underline">
Liang Wang - e5 Models
</a>
</p>
</div>
<div>
<label for="model" class="font-medium block">Models Options: </label>
<select
id="model"
class="border-2 border-gray-500 rounded-md font-light interactive disabled:cursor-not-allowed w-full max-w-max">
<option value="bge_micro">gte_tiny (34.8 MB)</option>
<option value="gte_tiny">gte_tiny (45.5 MB)</option>
<option value="intfloat_e5_small_v2" selected>
intfloat/e5-small-v2 (133 MB)
</option>
<option value="intfloat_e5_base_v2">
intfloat/e5-base-v2 (438 MB)
</option>
<option value="intfloat_multilingual_e5_small">
intfloat/multilingual-e5-small (471 MB)
</option>
<option value="sentence_transformers_all_MiniLM_L6_v2">
sentence-transformers/all-MiniLM-L6-v2 (90.9 MB)
</option>
<option value="sentence_transformers_all_MiniLM_L12_v2">
sentence-transformers/all-MiniLM-L12-v2 (133 MB)
</option>
</select>
</div>
<div>
<h3 class="font-medium">Examples:</h3>
<form
id="form-wiki"
class="flex text-xs rounded-md justify-between w-min gap-3">
<input type="submit" hidden />
<button data-example class="disabled:cursor-not-allowed interactive">
Pizza
</button>
<button data-example class="disabled:cursor-not-allowed interactive">
Paris
</button>
<button data-example class="disabled:cursor-not-allowed interactive">
Physics
</button>
<input
type="text"
id="search-wiki"
title="Search Wikipedia article by title"
class="font-light py-0 mx-1 resize-none outline-none w-32 disabled:cursor-not-allowed interactive"
placeholder="Load Wikipedia article..." />
<button
title="Search Wikipedia article and load into input"
class="bg-gray-700 hover:bg-gray-800 text-white font-normal px-2 py-1 rounded disabled:bg-gray-300 disabled:cursor-not-allowed interactive">
Load
</button>
</form>
</div>
<form
id="form"
class="flex text-normal px-1 py-1 border border-gray-700 rounded-md items-center">
<input type="submit" hidden />
<input
type="text"
id="search-input"
class="font-light w-full px-3 py-2 mx-1 resize-none outline-none interactive disabled:cursor-not-allowed"
placeholder="Search query here..." />
<button
class="bg-gray-700 hover:bg-gray-800 text-white font-normal py-2 w-16 rounded disabled:bg-gray-300 disabled:cursor-not-allowed interactive">
Search
</button>
</form>
<div>
<h3 class="font-medium">Input text:</h3>
<div class="flex justify-between items-center">
<div class="rounded-md inline text-xs">
<span id="output-status" class="m-auto font-light invisible"
>C</span
>
</div>
</div>
<div
id="input-container"
tabindex="0"
class="min-h-[250px] bg-slate-100 text-gray-500 rounded-md p-4 flex flex-col gap-2 relative">
<textarea
id="input-area"
hidden
value=""
placeholder="Input text to perform semantic similarity search..."
class="flex-1 resize-none outline-none left-0 right-0 top-0 bottom-0 m-4 absolute interactive disabled:invisible"></textarea>
<p id="output-area" class="grid-rows-2">
Input text to perform semantic similarity search...
</p>
</div>
</div>
</main>
</body>
</html>