radames commited on
Commit
ea8cb06
·
1 Parent(s): 11968b1
Files changed (25) hide show
  1. .gitattributes +1 -0
  2. .gitignore +4 -0
  3. README.md +1 -1
  4. app.py +178 -0
  5. examples/cybetruck.jpeg +0 -0
  6. examples/jesus.png +3 -0
  7. examples/lara.jpeg +0 -0
  8. gradio_cached_examples/14/component 0/351a0bfafaaecc7814de/image.png +3 -0
  9. gradio_cached_examples/14/component 0/b34adaae151a4459167b/image.png +3 -0
  10. gradio_cached_examples/14/component 0/b3e9f831c3822912c747/image.png +3 -0
  11. gradio_cached_examples/14/component 0/b5498d7a96d85e965a9b/image.png +3 -0
  12. gradio_cached_examples/14/component 0/bdf0acf00cd9b1c85287/image.png +3 -0
  13. gradio_cached_examples/14/component 0/e06cb354ee474e562e51/image.png +3 -0
  14. gradio_cached_examples/14/component 1/3c86c69e7b46e996c594/img_bf8b5bfd-5769-445e-8b04-398fa66b36b1_1024.jpg +0 -0
  15. gradio_cached_examples/14/component 1/8df9754c0e60183ba8f8/img_bf8b5bfd-5769-445e-8b04-398fa66b36b1_1024.jpg +0 -0
  16. gradio_cached_examples/14/component 1/cdf61b32958e252f00b9/img_87222732-8f7b-4e26-bfa9-bd5842e2af61_2048.jpg +0 -0
  17. gradio_cached_examples/14/component 1/d20358db86db5687c4d3/img_87222732-8f7b-4e26-bfa9-bd5842e2af61_1024.jpg +0 -0
  18. gradio_cached_examples/14/component 1/d51a78500d54f78aef8f/img_2b3a159b-b19d-4810-8678-8dd6762db0c0_2048.jpg +0 -0
  19. gradio_cached_examples/14/component 1/e80581741e20de234eb8/img_bf8b5bfd-5769-445e-8b04-398fa66b36b1_2048.jpg +0 -0
  20. gradio_cached_examples/14/component 1/e96cc92c329d8c5f7b30/img_2b3a159b-b19d-4810-8678-8dd6762db0c0_1024.jpg +0 -0
  21. gradio_cached_examples/14/component 1/ec2cd95acdcb6c98d37e/img_2b3a159b-b19d-4810-8678-8dd6762db0c0_1024.jpg +0 -0
  22. gradio_cached_examples/14/component 1/ee84949074ae1250919e/img_87222732-8f7b-4e26-bfa9-bd5842e2af61_1024.jpg +0 -0
  23. gradio_cached_examples/14/log.csv +4 -0
  24. pipeline_demofusion_sdxl.py +1788 -0
  25. requirements.txt +13 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.png filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ __pycache__/
2
+ venv/
3
+ public/
4
+ *.pem
README.md CHANGED
@@ -4,7 +4,7 @@ emoji: 💻
4
  colorFrom: blue
5
  colorTo: red
6
  sdk: gradio
7
- sdk_version: 4.7.1
8
  app_file: app.py
9
  pinned: false
10
  ---
 
4
  colorFrom: blue
5
  colorTo: red
6
  sdk: gradio
7
+ sdk_version: 4.8.0
8
  app_file: app.py
9
  pinned: false
10
  ---
app.py ADDED
@@ -0,0 +1,178 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from gradio_imageslider import ImageSlider
3
+ import torch
4
+ from diffusers import DiffusionPipeline, AutoencoderKL
5
+ from PIL import Image
6
+ from torchvision import transforms
7
+ import numpy as np
8
+ import tempfile
9
+ import os
10
+ import uuid
11
+
12
+ TORCH_COMPILE = os.getenv("TORCH_COMPILE", "0") == "1"
13
+
14
+ device = "cuda" if torch.cuda.is_available() else "cpu"
15
+ dtype = torch.float16
16
+
17
+ vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=dtype)
18
+ pipe = DiffusionPipeline.from_pretrained(
19
+ "stabilityai/stable-diffusion-xl-base-1.0",
20
+ custom_pipeline="pipeline_demofusion_sdxl.py",
21
+ custom_revision="main",
22
+ torch_dtype=dtype,
23
+ variant="fp16",
24
+ use_safetensors=True,
25
+ vae=vae,
26
+ )
27
+ pipe = pipe.to(device)
28
+ if TORCH_COMPILE:
29
+ pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
30
+
31
+
32
+ def load_and_process_image(pil_image):
33
+ transform = transforms.Compose(
34
+ [
35
+ transforms.Resize((1024, 1024)),
36
+ transforms.ToTensor(),
37
+ transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
38
+ ]
39
+ )
40
+ image = transform(pil_image)
41
+ image = image.unsqueeze(0).half()
42
+ return image
43
+
44
+
45
+ def pad_image(image):
46
+ w, h = image.size
47
+ if w == h:
48
+ return image
49
+ elif w > h:
50
+ new_image = Image.new(image.mode, (w, w), (0, 0, 0))
51
+ pad_w = 0
52
+ pad_h = (w - h) // 2
53
+ new_image.paste(image, (0, pad_h))
54
+ return new_image
55
+ else:
56
+ new_image = Image.new(image.mode, (h, h), (0, 0, 0))
57
+ pad_w = (h - w) // 2
58
+ pad_h = 0
59
+ new_image.paste(image, (pad_w, 0))
60
+ return new_image
61
+
62
+
63
+ def predict(
64
+ input_image,
65
+ prompt,
66
+ negative_prompt,
67
+ seed,
68
+ scale=2,
69
+ progress=gr.Progress(track_tqdm=True),
70
+ ):
71
+ if input_image is None:
72
+ raise gr.Error("Please upload an image.")
73
+ padded_image = pad_image(input_image).resize((1024, 1024))
74
+ padded_image.save(f"padded_image+{seed}.jpg")
75
+ image_lr = load_and_process_image(padded_image).to(device)
76
+ generator = torch.manual_seed(seed)
77
+ images = pipe(
78
+ prompt,
79
+ negative_prompt=negative_prompt,
80
+ image_lr=image_lr,
81
+ width=1024 * scale,
82
+ height=1024 * scale,
83
+ view_batch_size=16,
84
+ stride=64,
85
+ generator=generator,
86
+ num_inference_steps=25,
87
+ guidance_scale=7.5,
88
+ cosine_scale_1=3,
89
+ cosine_scale_2=1,
90
+ cosine_scale_3=1,
91
+ sigma=0.8,
92
+ multi_decoder=True,
93
+ show_image=False,
94
+ lowvram=True,
95
+ )
96
+ images_path = tempfile.mkdtemp()
97
+ paths = []
98
+ uuid_name = uuid.uuid4()
99
+ for i, img in enumerate(images):
100
+ img.save(images_path + f"/img_{uuid_name}_{img.size[0]}.jpg")
101
+ paths.append(images_path + f"/img_{uuid_name}_{img.size[0]}.jpg")
102
+ return (images[0], images[-1]), paths
103
+
104
+
105
+ css = """
106
+ #intro{
107
+ max-width: 100%;
108
+ text-align: center;
109
+ margin: 0 auto;
110
+ }
111
+ """
112
+
113
+ with gr.Blocks(css=css) as demo:
114
+ gr.Markdown(
115
+ """# Super Resolution - SDXL
116
+ ## [DemoFusion](https://github.com/PRIS-CV/DemoFusion)""",
117
+ elem_id="intro",
118
+ )
119
+ with gr.Row():
120
+ with gr.Column(scale=1):
121
+ image_input = gr.Image(type="pil", label="Input Image")
122
+ prompt = gr.Textbox(
123
+ label="Prompt",
124
+ info="The prompt is very important to get the desired results. Please try to describe the image as best as you can.",
125
+ )
126
+ negative_prompt = gr.Textbox(
127
+ label="Negative Prompt",
128
+ value="blurry, ugly, duplicate, poorly drawn, deformed, mosaic",
129
+ )
130
+ scale = gr.Slider(minimum=2, maximum=5, value=2, step=1, label="x Scale")
131
+ seed = gr.Slider(
132
+ minimum=0,
133
+ maximum=2**64 - 1,
134
+ value=1415926535897932,
135
+ step=1,
136
+ label="Seed",
137
+ randomize=True,
138
+ )
139
+ btn = gr.Button()
140
+ with gr.Column(scale=2):
141
+ image_slider = ImageSlider()
142
+ files = gr.Files()
143
+ inputs = [image_input, prompt, negative_prompt, seed, scale]
144
+ outputs = [image_slider, files]
145
+ btn.click(predict, inputs=inputs, outputs=outputs, concurrency_limit=1)
146
+ gr.Examples(
147
+ fn=predict,
148
+ examples=[
149
+ [
150
+ "./examples/lara.jpeg",
151
+ "photography of lara croft 8k high definition award winning",
152
+ "blurry, ugly, duplicate, poorly drawn, deformed, mosaic",
153
+ 1415535897932,
154
+ 2,
155
+ ],
156
+ [
157
+ "./examples/cybetruck.jpeg",
158
+ "photo of tesla cybertruck futuristic car 8k high definition on a sand dune in mars, future",
159
+ "blurry, ugly, duplicate, poorly drawn, deformed, mosaic",
160
+ 1415535897932,
161
+ 2,
162
+ ],
163
+ [
164
+ "./examples/jesus.png",
165
+ "a photorealistic painting of Jesus Christ, 4k high definition",
166
+ "blurry, ugly, duplicate, poorly drawn, deformed, mosaic",
167
+ 1415535897932,
168
+ 2,
169
+ ],
170
+ ],
171
+ inputs=inputs,
172
+ outputs=outputs,
173
+ cache_examples=True,
174
+ )
175
+
176
+
177
+ demo.queue(api_open=False)
178
+ demo.launch(show_api=False)
examples/cybetruck.jpeg ADDED
examples/jesus.png ADDED

Git LFS Details

  • SHA256: edd3a002427c6e450ac0e7d63c31f80327f3b8030d64190207fb4af826f2439b
  • Pointer size: 131 Bytes
  • Size of remote file: 179 kB
examples/lara.jpeg ADDED
gradio_cached_examples/14/component 0/351a0bfafaaecc7814de/image.png ADDED

Git LFS Details

  • SHA256: 4c3c5d1e3400b194414d990013d7010f4dcc50bd9436aa008766f132e28d6177
  • Pointer size: 131 Bytes
  • Size of remote file: 712 kB
gradio_cached_examples/14/component 0/b34adaae151a4459167b/image.png ADDED

Git LFS Details

  • SHA256: db6b228613f3dd7ec08253df9b04c1ec50cb52972ae8c990b933ea17b2e36b58
  • Pointer size: 132 Bytes
  • Size of remote file: 4.15 MB
gradio_cached_examples/14/component 0/b3e9f831c3822912c747/image.png ADDED

Git LFS Details

  • SHA256: 68499b9f345ef6970ffca63fc1643ed7fefd49ab17e0e8a4e40011ed4c3b9b14
  • Pointer size: 132 Bytes
  • Size of remote file: 3.29 MB
gradio_cached_examples/14/component 0/b5498d7a96d85e965a9b/image.png ADDED

Git LFS Details

  • SHA256: 011c8f36958366db3fd1f3290d7e7b14621e879898a134ab7670936adf1a84fa
  • Pointer size: 131 Bytes
  • Size of remote file: 847 kB
gradio_cached_examples/14/component 0/bdf0acf00cd9b1c85287/image.png ADDED

Git LFS Details

  • SHA256: c1ed9a54efb2560524792ffadb32c9b081f3cc0ccb01db98bbc9c3b62db0683e
  • Pointer size: 131 Bytes
  • Size of remote file: 696 kB
gradio_cached_examples/14/component 0/e06cb354ee474e562e51/image.png ADDED

Git LFS Details

  • SHA256: 6dca4b940d346451f6cecf29ea90245757da495d7e9d02deefd56de7bb8db25b
  • Pointer size: 132 Bytes
  • Size of remote file: 3.44 MB
gradio_cached_examples/14/component 1/3c86c69e7b46e996c594/img_bf8b5bfd-5769-445e-8b04-398fa66b36b1_1024.jpg ADDED
gradio_cached_examples/14/component 1/8df9754c0e60183ba8f8/img_bf8b5bfd-5769-445e-8b04-398fa66b36b1_1024.jpg ADDED
gradio_cached_examples/14/component 1/cdf61b32958e252f00b9/img_87222732-8f7b-4e26-bfa9-bd5842e2af61_2048.jpg ADDED
gradio_cached_examples/14/component 1/d20358db86db5687c4d3/img_87222732-8f7b-4e26-bfa9-bd5842e2af61_1024.jpg ADDED
gradio_cached_examples/14/component 1/d51a78500d54f78aef8f/img_2b3a159b-b19d-4810-8678-8dd6762db0c0_2048.jpg ADDED
gradio_cached_examples/14/component 1/e80581741e20de234eb8/img_bf8b5bfd-5769-445e-8b04-398fa66b36b1_2048.jpg ADDED
gradio_cached_examples/14/component 1/e96cc92c329d8c5f7b30/img_2b3a159b-b19d-4810-8678-8dd6762db0c0_1024.jpg ADDED
gradio_cached_examples/14/component 1/ec2cd95acdcb6c98d37e/img_2b3a159b-b19d-4810-8678-8dd6762db0c0_1024.jpg ADDED
gradio_cached_examples/14/component 1/ee84949074ae1250919e/img_87222732-8f7b-4e26-bfa9-bd5842e2af61_1024.jpg ADDED
gradio_cached_examples/14/log.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ component 0,component 1,flag,username,timestamp
2
+ "[{""path"":""gradio_cached_examples/14/component 0/b5498d7a96d85e965a9b/image.png"",""url"":null,""size"":null,""orig_name"":null,""mime_type"":null},{""path"":""gradio_cached_examples/14/component 0/b34adaae151a4459167b/image.png"",""url"":null,""size"":null,""orig_name"":null,""mime_type"":null}]","[{""path"":""gradio_cached_examples/14/component 1/8df9754c0e60183ba8f8/img_bf8b5bfd-5769-445e-8b04-398fa66b36b1_1024.jpg"",""url"":null,""size"":65560,""orig_name"":""img_bf8b5bfd-5769-445e-8b04-398fa66b36b1_1024.jpg"",""mime_type"":null},{""path"":""gradio_cached_examples/14/component 1/3c86c69e7b46e996c594/img_bf8b5bfd-5769-445e-8b04-398fa66b36b1_1024.jpg"",""url"":null,""size"":65560,""orig_name"":""img_bf8b5bfd-5769-445e-8b04-398fa66b36b1_1024.jpg"",""mime_type"":null},{""path"":""gradio_cached_examples/14/component 1/e80581741e20de234eb8/img_bf8b5bfd-5769-445e-8b04-398fa66b36b1_2048.jpg"",""url"":null,""size"":165512,""orig_name"":""img_bf8b5bfd-5769-445e-8b04-398fa66b36b1_2048.jpg"",""mime_type"":null}]",,,2023-12-06 19:52:37.669846
3
+ "[{""path"":""gradio_cached_examples/14/component 0/351a0bfafaaecc7814de/image.png"",""url"":null,""size"":null,""orig_name"":null,""mime_type"":null},{""path"":""gradio_cached_examples/14/component 0/e06cb354ee474e562e51/image.png"",""url"":null,""size"":null,""orig_name"":null,""mime_type"":null}]","[{""path"":""gradio_cached_examples/14/component 1/ee84949074ae1250919e/img_87222732-8f7b-4e26-bfa9-bd5842e2af61_1024.jpg"",""url"":null,""size"":65506,""orig_name"":""img_87222732-8f7b-4e26-bfa9-bd5842e2af61_1024.jpg"",""mime_type"":null},{""path"":""gradio_cached_examples/14/component 1/d20358db86db5687c4d3/img_87222732-8f7b-4e26-bfa9-bd5842e2af61_1024.jpg"",""url"":null,""size"":65506,""orig_name"":""img_87222732-8f7b-4e26-bfa9-bd5842e2af61_1024.jpg"",""mime_type"":null},{""path"":""gradio_cached_examples/14/component 1/cdf61b32958e252f00b9/img_87222732-8f7b-4e26-bfa9-bd5842e2af61_2048.jpg"",""url"":null,""size"":244888,""orig_name"":""img_87222732-8f7b-4e26-bfa9-bd5842e2af61_2048.jpg"",""mime_type"":null}]",,,2023-12-06 19:53:55.398688
4
+ "[{""path"":""gradio_cached_examples/14/component 0/bdf0acf00cd9b1c85287/image.png"",""url"":null,""size"":null,""orig_name"":null,""mime_type"":null},{""path"":""gradio_cached_examples/14/component 0/b3e9f831c3822912c747/image.png"",""url"":null,""size"":null,""orig_name"":null,""mime_type"":null}]","[{""path"":""gradio_cached_examples/14/component 1/e96cc92c329d8c5f7b30/img_2b3a159b-b19d-4810-8678-8dd6762db0c0_1024.jpg"",""url"":null,""size"":47077,""orig_name"":""img_2b3a159b-b19d-4810-8678-8dd6762db0c0_1024.jpg"",""mime_type"":null},{""path"":""gradio_cached_examples/14/component 1/ec2cd95acdcb6c98d37e/img_2b3a159b-b19d-4810-8678-8dd6762db0c0_1024.jpg"",""url"":null,""size"":47077,""orig_name"":""img_2b3a159b-b19d-4810-8678-8dd6762db0c0_1024.jpg"",""mime_type"":null},{""path"":""gradio_cached_examples/14/component 1/d51a78500d54f78aef8f/img_2b3a159b-b19d-4810-8678-8dd6762db0c0_2048.jpg"",""url"":null,""size"":143073,""orig_name"":""img_2b3a159b-b19d-4810-8678-8dd6762db0c0_2048.jpg"",""mime_type"":null}]",,,2023-12-06 19:55:13.167461
pipeline_demofusion_sdxl.py ADDED
@@ -0,0 +1,1788 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ import os
17
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
18
+ import matplotlib.pyplot as plt
19
+
20
+ import torch
21
+ import torch.nn.functional as F
22
+ import numpy as np
23
+ import random
24
+ import warnings
25
+ from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
26
+
27
+ from diffusers.image_processor import VaeImageProcessor
28
+ from diffusers.loaders import (
29
+ FromSingleFileMixin,
30
+ LoraLoaderMixin,
31
+ TextualInversionLoaderMixin,
32
+ )
33
+ from diffusers.models import AutoencoderKL, UNet2DConditionModel
34
+ from diffusers.models.attention_processor import (
35
+ AttnProcessor2_0,
36
+ LoRAAttnProcessor2_0,
37
+ LoRAXFormersAttnProcessor,
38
+ XFormersAttnProcessor,
39
+ )
40
+ from diffusers.models.lora import adjust_lora_scale_text_encoder
41
+ from diffusers.schedulers import KarrasDiffusionSchedulers
42
+ from diffusers.utils import (
43
+ is_accelerate_available,
44
+ is_accelerate_version,
45
+ is_invisible_watermark_available,
46
+ logging,
47
+ replace_example_docstring,
48
+ )
49
+ from diffusers.utils.torch_utils import randn_tensor
50
+ from diffusers.pipelines.pipeline_utils import DiffusionPipeline
51
+ from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput
52
+
53
+
54
+ if is_invisible_watermark_available():
55
+ from diffusers.pipelines.stable_diffusion_xl.watermark import (
56
+ StableDiffusionXLWatermarker,
57
+ )
58
+
59
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
60
+
61
+ EXAMPLE_DOC_STRING = """
62
+ Examples:
63
+ ```py
64
+ >>> import torch
65
+ >>> from diffusers import StableDiffusionXLPipeline
66
+
67
+ >>> pipe = StableDiffusionXLPipeline.from_pretrained(
68
+ ... "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
69
+ ... )
70
+ >>> pipe = pipe.to("cuda")
71
+
72
+ >>> prompt = "a photo of an astronaut riding a horse on mars"
73
+ >>> image = pipe(prompt).images[0]
74
+ ```
75
+ """
76
+
77
+
78
+ def gaussian_kernel(kernel_size=3, sigma=1.0, channels=3):
79
+ x_coord = torch.arange(kernel_size)
80
+ gaussian_1d = torch.exp(
81
+ -((x_coord - (kernel_size - 1) / 2) ** 2) / (2 * sigma**2)
82
+ )
83
+ gaussian_1d = gaussian_1d / gaussian_1d.sum()
84
+ gaussian_2d = gaussian_1d[:, None] * gaussian_1d[None, :]
85
+ kernel = gaussian_2d[None, None, :, :].repeat(channels, 1, 1, 1)
86
+
87
+ return kernel
88
+
89
+
90
+ def gaussian_filter(latents, kernel_size=3, sigma=1.0):
91
+ channels = latents.shape[1]
92
+ kernel = gaussian_kernel(kernel_size, sigma, channels).to(
93
+ latents.device, latents.dtype
94
+ )
95
+ blurred_latents = F.conv2d(
96
+ latents, kernel, padding=kernel_size // 2, groups=channels
97
+ )
98
+
99
+ return blurred_latents
100
+
101
+
102
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
103
+ def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
104
+ """
105
+ Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
106
+ Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
107
+ """
108
+ std_text = noise_pred_text.std(
109
+ dim=list(range(1, noise_pred_text.ndim)), keepdim=True
110
+ )
111
+ std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
112
+ # rescale the results from guidance (fixes overexposure)
113
+ noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
114
+ # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
115
+ noise_cfg = (
116
+ guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
117
+ )
118
+ return noise_cfg
119
+
120
+
121
+ class DemoFusionSDXLPipeline(
122
+ DiffusionPipeline, FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin
123
+ ):
124
+ r"""
125
+ Pipeline for text-to-image generation using Stable Diffusion XL.
126
+
127
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
128
+ library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
129
+
130
+ In addition the pipeline inherits the following loading methods:
131
+ - *LoRA*: [`StableDiffusionXLPipeline.load_lora_weights`]
132
+ - *Ckpt*: [`loaders.FromSingleFileMixin.from_single_file`]
133
+
134
+ as well as the following saving methods:
135
+ - *LoRA*: [`loaders.StableDiffusionXLPipeline.save_lora_weights`]
136
+
137
+ Args:
138
+ vae ([`AutoencoderKL`]):
139
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
140
+ text_encoder ([`CLIPTextModel`]):
141
+ Frozen text-encoder. Stable Diffusion XL uses the text portion of
142
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
143
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
144
+ text_encoder_2 ([` CLIPTextModelWithProjection`]):
145
+ Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of
146
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
147
+ specifically the
148
+ [laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
149
+ variant.
150
+ tokenizer (`CLIPTokenizer`):
151
+ Tokenizer of class
152
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
153
+ tokenizer_2 (`CLIPTokenizer`):
154
+ Second Tokenizer of class
155
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
156
+ unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
157
+ scheduler ([`SchedulerMixin`]):
158
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
159
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
160
+ force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
161
+ Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of
162
+ `stabilityai/stable-diffusion-xl-base-1-0`.
163
+ add_watermarker (`bool`, *optional*):
164
+ Whether to use the [invisible_watermark library](https://github.com/ShieldMnt/invisible-watermark/) to
165
+ watermark output images. If not defined, it will default to True if the package is installed, otherwise no
166
+ watermarker will be used.
167
+ """
168
+ model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae"
169
+
170
+ def __init__(
171
+ self,
172
+ vae: AutoencoderKL,
173
+ text_encoder: CLIPTextModel,
174
+ text_encoder_2: CLIPTextModelWithProjection,
175
+ tokenizer: CLIPTokenizer,
176
+ tokenizer_2: CLIPTokenizer,
177
+ unet: UNet2DConditionModel,
178
+ scheduler: KarrasDiffusionSchedulers,
179
+ force_zeros_for_empty_prompt: bool = True,
180
+ add_watermarker: Optional[bool] = None,
181
+ ):
182
+ super().__init__()
183
+
184
+ self.register_modules(
185
+ vae=vae,
186
+ text_encoder=text_encoder,
187
+ text_encoder_2=text_encoder_2,
188
+ tokenizer=tokenizer,
189
+ tokenizer_2=tokenizer_2,
190
+ unet=unet,
191
+ scheduler=scheduler,
192
+ )
193
+ self.register_to_config(
194
+ force_zeros_for_empty_prompt=force_zeros_for_empty_prompt
195
+ )
196
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
197
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
198
+ self.default_sample_size = self.unet.config.sample_size
199
+
200
+ add_watermarker = (
201
+ add_watermarker
202
+ if add_watermarker is not None
203
+ else is_invisible_watermark_available()
204
+ )
205
+
206
+ if add_watermarker:
207
+ self.watermark = StableDiffusionXLWatermarker()
208
+ else:
209
+ self.watermark = None
210
+
211
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
212
+ def enable_vae_slicing(self):
213
+ r"""
214
+ Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
215
+ compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
216
+ """
217
+ self.vae.enable_slicing()
218
+
219
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
220
+ def disable_vae_slicing(self):
221
+ r"""
222
+ Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
223
+ computing decoding in one step.
224
+ """
225
+ self.vae.disable_slicing()
226
+
227
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
228
+ def enable_vae_tiling(self):
229
+ r"""
230
+ Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
231
+ compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
232
+ processing larger images.
233
+ """
234
+ self.vae.enable_tiling()
235
+
236
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
237
+ def disable_vae_tiling(self):
238
+ r"""
239
+ Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
240
+ computing decoding in one step.
241
+ """
242
+ self.vae.disable_tiling()
243
+
244
+ def encode_prompt(
245
+ self,
246
+ prompt: str,
247
+ prompt_2: Optional[str] = None,
248
+ device: Optional[torch.device] = None,
249
+ num_images_per_prompt: int = 1,
250
+ do_classifier_free_guidance: bool = True,
251
+ negative_prompt: Optional[str] = None,
252
+ negative_prompt_2: Optional[str] = None,
253
+ prompt_embeds: Optional[torch.FloatTensor] = None,
254
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
255
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
256
+ negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
257
+ lora_scale: Optional[float] = None,
258
+ ):
259
+ r"""
260
+ Encodes the prompt into text encoder hidden states.
261
+
262
+ Args:
263
+ prompt (`str` or `List[str]`, *optional*):
264
+ prompt to be encoded
265
+ prompt_2 (`str` or `List[str]`, *optional*):
266
+ The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
267
+ used in both text-encoders
268
+ device: (`torch.device`):
269
+ torch device
270
+ num_images_per_prompt (`int`):
271
+ number of images that should be generated per prompt
272
+ do_classifier_free_guidance (`bool`):
273
+ whether to use classifier free guidance or not
274
+ negative_prompt (`str` or `List[str]`, *optional*):
275
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
276
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
277
+ less than `1`).
278
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
279
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
280
+ `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
281
+ prompt_embeds (`torch.FloatTensor`, *optional*):
282
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
283
+ provided, text embeddings will be generated from `prompt` input argument.
284
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
285
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
286
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
287
+ argument.
288
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
289
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
290
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
291
+ negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
292
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
293
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
294
+ input argument.
295
+ lora_scale (`float`, *optional*):
296
+ A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
297
+ """
298
+ device = device or self._execution_device
299
+
300
+ # set lora scale so that monkey patched LoRA
301
+ # function of text encoder can correctly access it
302
+ if lora_scale is not None and isinstance(self, LoraLoaderMixin):
303
+ self._lora_scale = lora_scale
304
+
305
+ # dynamically adjust the LoRA scale
306
+ adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
307
+ adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale)
308
+
309
+ if prompt is not None and isinstance(prompt, str):
310
+ batch_size = 1
311
+ elif prompt is not None and isinstance(prompt, list):
312
+ batch_size = len(prompt)
313
+ else:
314
+ batch_size = prompt_embeds.shape[0]
315
+
316
+ # Define tokenizers and text encoders
317
+ tokenizers = (
318
+ [self.tokenizer, self.tokenizer_2]
319
+ if self.tokenizer is not None
320
+ else [self.tokenizer_2]
321
+ )
322
+ text_encoders = (
323
+ [self.text_encoder, self.text_encoder_2]
324
+ if self.text_encoder is not None
325
+ else [self.text_encoder_2]
326
+ )
327
+
328
+ if prompt_embeds is None:
329
+ prompt_2 = prompt_2 or prompt
330
+ # textual inversion: procecss multi-vector tokens if necessary
331
+ prompt_embeds_list = []
332
+ prompts = [prompt, prompt_2]
333
+ for prompt, tokenizer, text_encoder in zip(
334
+ prompts, tokenizers, text_encoders
335
+ ):
336
+ if isinstance(self, TextualInversionLoaderMixin):
337
+ prompt = self.maybe_convert_prompt(prompt, tokenizer)
338
+
339
+ text_inputs = tokenizer(
340
+ prompt,
341
+ padding="max_length",
342
+ max_length=tokenizer.model_max_length,
343
+ truncation=True,
344
+ return_tensors="pt",
345
+ )
346
+
347
+ text_input_ids = text_inputs.input_ids
348
+ untruncated_ids = tokenizer(
349
+ prompt, padding="longest", return_tensors="pt"
350
+ ).input_ids
351
+
352
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[
353
+ -1
354
+ ] and not torch.equal(text_input_ids, untruncated_ids):
355
+ removed_text = tokenizer.batch_decode(
356
+ untruncated_ids[:, tokenizer.model_max_length - 1 : -1]
357
+ )
358
+ logger.warning(
359
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
360
+ f" {tokenizer.model_max_length} tokens: {removed_text}"
361
+ )
362
+
363
+ prompt_embeds = text_encoder(
364
+ text_input_ids.to(device),
365
+ output_hidden_states=True,
366
+ )
367
+
368
+ # We are only ALWAYS interested in the pooled output of the final text encoder
369
+ pooled_prompt_embeds = prompt_embeds[0]
370
+ prompt_embeds = prompt_embeds.hidden_states[-2]
371
+
372
+ prompt_embeds_list.append(prompt_embeds)
373
+
374
+ prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
375
+
376
+ # get unconditional embeddings for classifier free guidance
377
+ zero_out_negative_prompt = (
378
+ negative_prompt is None and self.config.force_zeros_for_empty_prompt
379
+ )
380
+ if (
381
+ do_classifier_free_guidance
382
+ and negative_prompt_embeds is None
383
+ and zero_out_negative_prompt
384
+ ):
385
+ negative_prompt_embeds = torch.zeros_like(prompt_embeds)
386
+ negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
387
+ elif do_classifier_free_guidance and negative_prompt_embeds is None:
388
+ negative_prompt = negative_prompt or ""
389
+ negative_prompt_2 = negative_prompt_2 or negative_prompt
390
+
391
+ uncond_tokens: List[str]
392
+ if prompt is not None and type(prompt) is not type(negative_prompt):
393
+ raise TypeError(
394
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
395
+ f" {type(prompt)}."
396
+ )
397
+ elif isinstance(negative_prompt, str):
398
+ uncond_tokens = [negative_prompt, negative_prompt_2]
399
+ elif batch_size != len(negative_prompt):
400
+ raise ValueError(
401
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
402
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
403
+ " the batch size of `prompt`."
404
+ )
405
+ else:
406
+ uncond_tokens = [negative_prompt, negative_prompt_2]
407
+
408
+ negative_prompt_embeds_list = []
409
+ for negative_prompt, tokenizer, text_encoder in zip(
410
+ uncond_tokens, tokenizers, text_encoders
411
+ ):
412
+ if isinstance(self, TextualInversionLoaderMixin):
413
+ negative_prompt = self.maybe_convert_prompt(
414
+ negative_prompt, tokenizer
415
+ )
416
+
417
+ max_length = prompt_embeds.shape[1]
418
+ uncond_input = tokenizer(
419
+ negative_prompt,
420
+ padding="max_length",
421
+ max_length=max_length,
422
+ truncation=True,
423
+ return_tensors="pt",
424
+ )
425
+
426
+ negative_prompt_embeds = text_encoder(
427
+ uncond_input.input_ids.to(device),
428
+ output_hidden_states=True,
429
+ )
430
+ # We are only ALWAYS interested in the pooled output of the final text encoder
431
+ negative_pooled_prompt_embeds = negative_prompt_embeds[0]
432
+ negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
433
+
434
+ negative_prompt_embeds_list.append(negative_prompt_embeds)
435
+
436
+ negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
437
+
438
+ prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
439
+ bs_embed, seq_len, _ = prompt_embeds.shape
440
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
441
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
442
+ prompt_embeds = prompt_embeds.view(
443
+ bs_embed * num_images_per_prompt, seq_len, -1
444
+ )
445
+
446
+ if do_classifier_free_guidance:
447
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
448
+ seq_len = negative_prompt_embeds.shape[1]
449
+ negative_prompt_embeds = negative_prompt_embeds.to(
450
+ dtype=self.text_encoder_2.dtype, device=device
451
+ )
452
+ negative_prompt_embeds = negative_prompt_embeds.repeat(
453
+ 1, num_images_per_prompt, 1
454
+ )
455
+ negative_prompt_embeds = negative_prompt_embeds.view(
456
+ batch_size * num_images_per_prompt, seq_len, -1
457
+ )
458
+
459
+ pooled_prompt_embeds = pooled_prompt_embeds.repeat(
460
+ 1, num_images_per_prompt
461
+ ).view(bs_embed * num_images_per_prompt, -1)
462
+ if do_classifier_free_guidance:
463
+ negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(
464
+ 1, num_images_per_prompt
465
+ ).view(bs_embed * num_images_per_prompt, -1)
466
+
467
+ return (
468
+ prompt_embeds,
469
+ negative_prompt_embeds,
470
+ pooled_prompt_embeds,
471
+ negative_pooled_prompt_embeds,
472
+ )
473
+
474
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
475
+ def prepare_extra_step_kwargs(self, generator, eta):
476
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
477
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
478
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
479
+ # and should be between [0, 1]
480
+
481
+ accepts_eta = "eta" in set(
482
+ inspect.signature(self.scheduler.step).parameters.keys()
483
+ )
484
+ extra_step_kwargs = {}
485
+ if accepts_eta:
486
+ extra_step_kwargs["eta"] = eta
487
+
488
+ # check if the scheduler accepts generator
489
+ accepts_generator = "generator" in set(
490
+ inspect.signature(self.scheduler.step).parameters.keys()
491
+ )
492
+ if accepts_generator:
493
+ extra_step_kwargs["generator"] = generator
494
+ return extra_step_kwargs
495
+
496
+ def check_inputs(
497
+ self,
498
+ prompt,
499
+ prompt_2,
500
+ height,
501
+ width,
502
+ callback_steps,
503
+ negative_prompt=None,
504
+ negative_prompt_2=None,
505
+ prompt_embeds=None,
506
+ negative_prompt_embeds=None,
507
+ pooled_prompt_embeds=None,
508
+ negative_pooled_prompt_embeds=None,
509
+ num_images_per_prompt=None,
510
+ ):
511
+ if height % 8 != 0 or width % 8 != 0:
512
+ raise ValueError(
513
+ f"`height` and `width` have to be divisible by 8 but are {height} and {width}."
514
+ )
515
+
516
+ if (callback_steps is None) or (
517
+ callback_steps is not None
518
+ and (not isinstance(callback_steps, int) or callback_steps <= 0)
519
+ ):
520
+ raise ValueError(
521
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
522
+ f" {type(callback_steps)}."
523
+ )
524
+
525
+ if prompt is not None and prompt_embeds is not None:
526
+ raise ValueError(
527
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
528
+ " only forward one of the two."
529
+ )
530
+ elif prompt_2 is not None and prompt_embeds is not None:
531
+ raise ValueError(
532
+ f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
533
+ " only forward one of the two."
534
+ )
535
+ elif prompt is None and prompt_embeds is None:
536
+ raise ValueError(
537
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
538
+ )
539
+ elif prompt is not None and (
540
+ not isinstance(prompt, str) and not isinstance(prompt, list)
541
+ ):
542
+ raise ValueError(
543
+ f"`prompt` has to be of type `str` or `list` but is {type(prompt)}"
544
+ )
545
+ elif prompt_2 is not None and (
546
+ not isinstance(prompt_2, str) and not isinstance(prompt_2, list)
547
+ ):
548
+ raise ValueError(
549
+ f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}"
550
+ )
551
+
552
+ if negative_prompt is not None and negative_prompt_embeds is not None:
553
+ raise ValueError(
554
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
555
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
556
+ )
557
+ elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
558
+ raise ValueError(
559
+ f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
560
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
561
+ )
562
+
563
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
564
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
565
+ raise ValueError(
566
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
567
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
568
+ f" {negative_prompt_embeds.shape}."
569
+ )
570
+
571
+ if prompt_embeds is not None and pooled_prompt_embeds is None:
572
+ raise ValueError(
573
+ "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
574
+ )
575
+
576
+ if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
577
+ raise ValueError(
578
+ "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
579
+ )
580
+
581
+ # DemoFusion specific checks
582
+ if max(height, width) % 512 != 0:
583
+ raise ValueError(
584
+ f"the larger one of `height` and `width` has to be divisible by 1024 but are {height} and {width}."
585
+ )
586
+
587
+ if num_images_per_prompt != 1:
588
+ warnings.warn(
589
+ "num_images_per_prompt != 1 is not supported by DemoFusion and will be ignored."
590
+ )
591
+ num_images_per_prompt = 1
592
+
593
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
594
+ def prepare_latents(
595
+ self,
596
+ batch_size,
597
+ num_channels_latents,
598
+ height,
599
+ width,
600
+ dtype,
601
+ device,
602
+ generator,
603
+ latents=None,
604
+ ):
605
+ shape = (
606
+ batch_size,
607
+ num_channels_latents,
608
+ height // self.vae_scale_factor,
609
+ width // self.vae_scale_factor,
610
+ )
611
+ if isinstance(generator, list) and len(generator) != batch_size:
612
+ raise ValueError(
613
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
614
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
615
+ )
616
+
617
+ if latents is None:
618
+ latents = randn_tensor(
619
+ shape, generator=generator, device=device, dtype=dtype
620
+ )
621
+ else:
622
+ latents = latents.to(device)
623
+
624
+ # scale the initial noise by the standard deviation required by the scheduler
625
+ latents = latents * self.scheduler.init_noise_sigma
626
+ return latents
627
+
628
+ def _get_add_time_ids(
629
+ self, original_size, crops_coords_top_left, target_size, dtype
630
+ ):
631
+ add_time_ids = list(original_size + crops_coords_top_left + target_size)
632
+
633
+ passed_add_embed_dim = (
634
+ self.unet.config.addition_time_embed_dim * len(add_time_ids)
635
+ + self.text_encoder_2.config.projection_dim
636
+ )
637
+ expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
638
+
639
+ if expected_add_embed_dim != passed_add_embed_dim:
640
+ raise ValueError(
641
+ f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
642
+ )
643
+
644
+ add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
645
+ return add_time_ids
646
+
647
+ def get_views(self, height, width, window_size=128, stride=64, random_jitter=False):
648
+ # Here, we define the mappings F_i (see Eq. 7 in the MultiDiffusion paper https://arxiv.org/abs/2302.08113)
649
+ # if panorama's height/width < window_size, num_blocks of height/width should return 1
650
+ height //= self.vae_scale_factor
651
+ width //= self.vae_scale_factor
652
+ num_blocks_height = (
653
+ int((height - window_size) / stride - 1e-6) + 2
654
+ if height > window_size
655
+ else 1
656
+ )
657
+ num_blocks_width = (
658
+ int((width - window_size) / stride - 1e-6) + 2 if width > window_size else 1
659
+ )
660
+ total_num_blocks = int(num_blocks_height * num_blocks_width)
661
+ views = []
662
+ for i in range(total_num_blocks):
663
+ h_start = int((i // num_blocks_width) * stride)
664
+ h_end = h_start + window_size
665
+ w_start = int((i % num_blocks_width) * stride)
666
+ w_end = w_start + window_size
667
+
668
+ if h_end > height:
669
+ h_start = int(h_start + height - h_end)
670
+ h_end = int(height)
671
+ if w_end > width:
672
+ w_start = int(w_start + width - w_end)
673
+ w_end = int(width)
674
+ if h_start < 0:
675
+ h_end = int(h_end - h_start)
676
+ h_start = 0
677
+ if w_start < 0:
678
+ w_end = int(w_end - w_start)
679
+ w_start = 0
680
+
681
+ if random_jitter:
682
+ jitter_range = (window_size - stride) // 4
683
+ w_jitter = 0
684
+ h_jitter = 0
685
+ if (w_start != 0) and (w_end != width):
686
+ w_jitter = random.randint(-jitter_range, jitter_range)
687
+ elif (w_start == 0) and (w_end != width):
688
+ w_jitter = random.randint(-jitter_range, 0)
689
+ elif (w_start != 0) and (w_end == width):
690
+ w_jitter = random.randint(0, jitter_range)
691
+ if (h_start != 0) and (h_end != height):
692
+ h_jitter = random.randint(-jitter_range, jitter_range)
693
+ elif (h_start == 0) and (h_end != height):
694
+ h_jitter = random.randint(-jitter_range, 0)
695
+ elif (h_start != 0) and (h_end == height):
696
+ h_jitter = random.randint(0, jitter_range)
697
+ h_start += h_jitter + jitter_range
698
+ h_end += h_jitter + jitter_range
699
+ w_start += w_jitter + jitter_range
700
+ w_end += w_jitter + jitter_range
701
+
702
+ views.append((h_start, h_end, w_start, w_end))
703
+ return views
704
+
705
+ def tiled_decode(self, latents, current_height, current_width):
706
+ sample_size = self.unet.config.sample_size
707
+ core_size = self.unet.config.sample_size // 4
708
+ core_stride = core_size
709
+ pad_size = self.unet.config.sample_size // 4 * 3
710
+ decoder_view_batch_size = 1
711
+
712
+ if self.lowvram:
713
+ core_stride = core_size // 2
714
+ pad_size = core_size
715
+
716
+ views = self.get_views(
717
+ current_height, current_width, stride=core_stride, window_size=core_size
718
+ )
719
+ views_batch = [
720
+ views[i : i + decoder_view_batch_size]
721
+ for i in range(0, len(views), decoder_view_batch_size)
722
+ ]
723
+ latents_ = F.pad(
724
+ latents, (pad_size, pad_size, pad_size, pad_size), "constant", 0
725
+ )
726
+ image = torch.zeros(latents.size(0), 3, current_height, current_width).to(
727
+ latents.device
728
+ )
729
+ count = torch.zeros_like(image).to(latents.device)
730
+ # get the latents corresponding to the current view coordinates
731
+ with self.progress_bar(total=len(views_batch)) as progress_bar:
732
+ for j, batch_view in enumerate(views_batch):
733
+ vb_size = len(batch_view)
734
+ latents_for_view = torch.cat(
735
+ [
736
+ latents_[
737
+ :,
738
+ :,
739
+ h_start : h_end + pad_size * 2,
740
+ w_start : w_end + pad_size * 2,
741
+ ]
742
+ for h_start, h_end, w_start, w_end in batch_view
743
+ ]
744
+ ).to(self.vae.device)
745
+ image_patch = self.vae.decode(
746
+ latents_for_view / self.vae.config.scaling_factor, return_dict=False
747
+ )[0]
748
+ h_start, h_end, w_start, w_end = views[j]
749
+ h_start, h_end, w_start, w_end = (
750
+ h_start * self.vae_scale_factor,
751
+ h_end * self.vae_scale_factor,
752
+ w_start * self.vae_scale_factor,
753
+ w_end * self.vae_scale_factor,
754
+ )
755
+ p_h_start, p_h_end, p_w_start, p_w_end = (
756
+ pad_size * self.vae_scale_factor,
757
+ image_patch.size(2) - pad_size * self.vae_scale_factor,
758
+ pad_size * self.vae_scale_factor,
759
+ image_patch.size(3) - pad_size * self.vae_scale_factor,
760
+ )
761
+ image[:, :, h_start:h_end, w_start:w_end] += image_patch[
762
+ :, :, p_h_start:p_h_end, p_w_start:p_w_end
763
+ ].to(latents.device)
764
+ count[:, :, h_start:h_end, w_start:w_end] += 1
765
+ progress_bar.update()
766
+ image = image / count
767
+
768
+ return image
769
+
770
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
771
+ def upcast_vae(self):
772
+ dtype = self.vae.dtype
773
+ self.vae.to(dtype=torch.float32)
774
+ use_torch_2_0_or_xformers = isinstance(
775
+ self.vae.decoder.mid_block.attentions[0].processor,
776
+ (
777
+ AttnProcessor2_0,
778
+ XFormersAttnProcessor,
779
+ LoRAXFormersAttnProcessor,
780
+ LoRAAttnProcessor2_0,
781
+ ),
782
+ )
783
+ # if xformers or torch_2_0 is used attention block does not need
784
+ # to be in float32 which can save lots of memory
785
+ if use_torch_2_0_or_xformers:
786
+ self.vae.post_quant_conv.to(dtype)
787
+ self.vae.decoder.conv_in.to(dtype)
788
+ self.vae.decoder.mid_block.to(dtype)
789
+
790
+ @torch.no_grad()
791
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
792
+ def __call__(
793
+ self,
794
+ prompt: Union[str, List[str]] = None,
795
+ prompt_2: Optional[Union[str, List[str]]] = None,
796
+ height: Optional[int] = None,
797
+ width: Optional[int] = None,
798
+ num_inference_steps: int = 50,
799
+ denoising_end: Optional[float] = None,
800
+ guidance_scale: float = 5.0,
801
+ negative_prompt: Optional[Union[str, List[str]]] = None,
802
+ negative_prompt_2: Optional[Union[str, List[str]]] = None,
803
+ num_images_per_prompt: Optional[int] = 1,
804
+ eta: float = 0.0,
805
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
806
+ latents: Optional[torch.FloatTensor] = None,
807
+ prompt_embeds: Optional[torch.FloatTensor] = None,
808
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
809
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
810
+ negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
811
+ output_type: Optional[str] = "pil",
812
+ return_dict: bool = False,
813
+ callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
814
+ callback_steps: int = 1,
815
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
816
+ guidance_rescale: float = 0.0,
817
+ original_size: Optional[Tuple[int, int]] = None,
818
+ crops_coords_top_left: Tuple[int, int] = (0, 0),
819
+ target_size: Optional[Tuple[int, int]] = None,
820
+ negative_original_size: Optional[Tuple[int, int]] = None,
821
+ negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
822
+ negative_target_size: Optional[Tuple[int, int]] = None,
823
+ ################### DemoFusion specific parameters ####################
824
+ view_batch_size: int = 16,
825
+ multi_decoder: bool = True,
826
+ stride: Optional[int] = 64,
827
+ cosine_scale_1: Optional[float] = 3.0,
828
+ cosine_scale_2: Optional[float] = 1.0,
829
+ cosine_scale_3: Optional[float] = 1.0,
830
+ sigma: Optional[float] = 1.0,
831
+ show_image: bool = False,
832
+ lowvram: bool = False,
833
+ image_lr: Optional[torch.FloatTensor] = None,
834
+ ):
835
+ r"""
836
+ Function invoked when calling the pipeline for generation.
837
+
838
+ Args:
839
+ prompt (`str` or `List[str]`, *optional*):
840
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
841
+ instead.
842
+ prompt_2 (`str` or `List[str]`, *optional*):
843
+ The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
844
+ used in both text-encoders
845
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
846
+ The height in pixels of the generated image. This is set to 1024 by default for the best results.
847
+ Anything below 512 pixels won't work well for
848
+ [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
849
+ and checkpoints that are not specifically fine-tuned on low resolutions.
850
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
851
+ The width in pixels of the generated image. This is set to 1024 by default for the best results.
852
+ Anything below 512 pixels won't work well for
853
+ [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
854
+ and checkpoints that are not specifically fine-tuned on low resolutions.
855
+ num_inference_steps (`int`, *optional*, defaults to 50):
856
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
857
+ expense of slower inference.
858
+ denoising_end (`float`, *optional*):
859
+ When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
860
+ completed before it is intentionally prematurely terminated. As a result, the returned sample will
861
+ still retain a substantial amount of noise as determined by the discrete timesteps selected by the
862
+ scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
863
+ "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
864
+ Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
865
+ guidance_scale (`float`, *optional*, defaults to 5.0):
866
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
867
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
868
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
869
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
870
+ usually at the expense of lower image quality.
871
+ negative_prompt (`str` or `List[str]`, *optional*):
872
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
873
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
874
+ less than `1`).
875
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
876
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
877
+ `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
878
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
879
+ The number of images to generate per prompt.
880
+ eta (`float`, *optional*, defaults to 0.0):
881
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
882
+ [`schedulers.DDIMScheduler`], will be ignored for others.
883
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
884
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
885
+ to make generation deterministic.
886
+ latents (`torch.FloatTensor`, *optional*):
887
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
888
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
889
+ tensor will ge generated by sampling using the supplied random `generator`.
890
+ prompt_embeds (`torch.FloatTensor`, *optional*):
891
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
892
+ provided, text embeddings will be generated from `prompt` input argument.
893
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
894
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
895
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
896
+ argument.
897
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
898
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
899
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
900
+ negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
901
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
902
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
903
+ input argument.
904
+ output_type (`str`, *optional*, defaults to `"pil"`):
905
+ The output format of the generate image. Choose between
906
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
907
+ return_dict (`bool`, *optional*, defaults to `True`):
908
+ Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
909
+ of a plain tuple.
910
+ callback (`Callable`, *optional*):
911
+ A function that will be called every `callback_steps` steps during inference. The function will be
912
+ called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
913
+ callback_steps (`int`, *optional*, defaults to 1):
914
+ The frequency at which the `callback` function will be called. If not specified, the callback will be
915
+ called at every step.
916
+ cross_attention_kwargs (`dict`, *optional*):
917
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
918
+ `self.processor` in
919
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
920
+ guidance_rescale (`float`, *optional*, defaults to 0.7):
921
+ Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
922
+ Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
923
+ [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
924
+ Guidance rescale factor should fix overexposure when using zero terminal SNR.
925
+ original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
926
+ If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
927
+ `original_size` defaults to `(width, height)` if not specified. Part of SDXL's micro-conditioning as
928
+ explained in section 2.2 of
929
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
930
+ crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
931
+ `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
932
+ `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
933
+ `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
934
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
935
+ target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
936
+ For most cases, `target_size` should be set to the desired height and width of the generated image. If
937
+ not specified it will default to `(width, height)`. Part of SDXL's micro-conditioning as explained in
938
+ section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
939
+ negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
940
+ To negatively condition the generation process based on a specific image resolution. Part of SDXL's
941
+ micro-conditioning as explained in section 2.2 of
942
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
943
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
944
+ negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
945
+ To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
946
+ micro-conditioning as explained in section 2.2 of
947
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
948
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
949
+ negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
950
+ To negatively condition the generation process based on a target image resolution. It should be as same
951
+ as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
952
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
953
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
954
+ ################### DemoFusion specific parameters ####################
955
+ view_batch_size (`int`, defaults to 16):
956
+ The batch size for multiple denoising paths. Typically, a larger batch size can result in higher
957
+ efficiency but comes with increased GPU memory requirements.
958
+ multi_decoder (`bool`, defaults to True):
959
+ Determine whether to use a tiled decoder. Generally, when the resolution exceeds 3072x3072,
960
+ a tiled decoder becomes necessary.
961
+ stride (`int`, defaults to 64):
962
+ The stride of moving local patches. A smaller stride is better for alleviating seam issues,
963
+ but it also introduces additional computational overhead and inference time.
964
+ cosine_scale_1 (`float`, defaults to 3):
965
+ Control the strength of skip-residual. For specific impacts, please refer to Appendix C
966
+ in the DemoFusion paper.
967
+ cosine_scale_2 (`float`, defaults to 1):
968
+ Control the strength of dilated sampling. For specific impacts, please refer to Appendix C
969
+ in the DemoFusion paper.
970
+ cosine_scale_3 (`float`, defaults to 1):
971
+ Control the strength of the gaussion filter. For specific impacts, please refer to Appendix C
972
+ in the DemoFusion paper.
973
+ sigma (`float`, defaults to 1):
974
+ The standerd value of the gaussian filter.
975
+ show_image (`bool`, defaults to False):
976
+ Determine whether to show intermediate results during generation.
977
+ lowvram (`bool`, defaults to False):
978
+ Try to fit in 8 Gb of VRAM, with xformers installed.
979
+
980
+ Examples:
981
+
982
+ Returns:
983
+ a `list` with the generated images at each phase.
984
+ """
985
+
986
+ # 0. Default height and width to unet
987
+ height = height or self.default_sample_size * self.vae_scale_factor
988
+ width = width or self.default_sample_size * self.vae_scale_factor
989
+
990
+ x1_size = self.default_sample_size * self.vae_scale_factor
991
+
992
+ height_scale = height / x1_size
993
+ width_scale = width / x1_size
994
+ scale_num = int(max(height_scale, width_scale))
995
+ aspect_ratio = min(height_scale, width_scale) / max(height_scale, width_scale)
996
+
997
+ original_size = original_size or (height, width)
998
+ target_size = target_size or (height, width)
999
+
1000
+ # 1. Check inputs. Raise error if not correct
1001
+ self.check_inputs(
1002
+ prompt,
1003
+ prompt_2,
1004
+ height,
1005
+ width,
1006
+ callback_steps,
1007
+ negative_prompt,
1008
+ negative_prompt_2,
1009
+ prompt_embeds,
1010
+ negative_prompt_embeds,
1011
+ pooled_prompt_embeds,
1012
+ negative_pooled_prompt_embeds,
1013
+ num_images_per_prompt,
1014
+ )
1015
+
1016
+ # 2. Define call parameters
1017
+ if prompt is not None and isinstance(prompt, str):
1018
+ batch_size = 1
1019
+ elif prompt is not None and isinstance(prompt, list):
1020
+ batch_size = len(prompt)
1021
+ else:
1022
+ batch_size = prompt_embeds.shape[0]
1023
+
1024
+ device = self._execution_device
1025
+ self.lowvram = lowvram
1026
+ if self.lowvram:
1027
+ self.vae.cpu()
1028
+ self.unet.cpu()
1029
+ self.text_encoder.to(device)
1030
+ self.text_encoder_2.to(device)
1031
+
1032
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
1033
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
1034
+ # corresponds to doing no classifier free guidance.
1035
+ do_classifier_free_guidance = guidance_scale > 1.0
1036
+
1037
+ # 3. Encode input prompt
1038
+ text_encoder_lora_scale = (
1039
+ cross_attention_kwargs.get("scale", None)
1040
+ if cross_attention_kwargs is not None
1041
+ else None
1042
+ )
1043
+ (
1044
+ prompt_embeds,
1045
+ negative_prompt_embeds,
1046
+ pooled_prompt_embeds,
1047
+ negative_pooled_prompt_embeds,
1048
+ ) = self.encode_prompt(
1049
+ prompt=prompt,
1050
+ prompt_2=prompt_2,
1051
+ device=device,
1052
+ num_images_per_prompt=num_images_per_prompt,
1053
+ do_classifier_free_guidance=do_classifier_free_guidance,
1054
+ negative_prompt=negative_prompt,
1055
+ negative_prompt_2=negative_prompt_2,
1056
+ prompt_embeds=prompt_embeds,
1057
+ negative_prompt_embeds=negative_prompt_embeds,
1058
+ pooled_prompt_embeds=pooled_prompt_embeds,
1059
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
1060
+ lora_scale=text_encoder_lora_scale,
1061
+ )
1062
+
1063
+ # 4. Prepare timesteps
1064
+ self.scheduler.set_timesteps(num_inference_steps, device=device)
1065
+
1066
+ timesteps = self.scheduler.timesteps
1067
+
1068
+ # 5. Prepare latent variables
1069
+ num_channels_latents = self.unet.config.in_channels
1070
+ latents = self.prepare_latents(
1071
+ batch_size * num_images_per_prompt,
1072
+ num_channels_latents,
1073
+ height // scale_num,
1074
+ width // scale_num,
1075
+ prompt_embeds.dtype,
1076
+ device,
1077
+ generator,
1078
+ latents,
1079
+ )
1080
+
1081
+ # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
1082
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
1083
+
1084
+ # 7. Prepare added time ids & embeddings
1085
+ add_text_embeds = pooled_prompt_embeds
1086
+ add_time_ids = self._get_add_time_ids(
1087
+ original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype
1088
+ )
1089
+ if negative_original_size is not None and negative_target_size is not None:
1090
+ negative_add_time_ids = self._get_add_time_ids(
1091
+ negative_original_size,
1092
+ negative_crops_coords_top_left,
1093
+ negative_target_size,
1094
+ dtype=prompt_embeds.dtype,
1095
+ )
1096
+ else:
1097
+ negative_add_time_ids = add_time_ids
1098
+
1099
+ if do_classifier_free_guidance:
1100
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
1101
+ add_text_embeds = torch.cat(
1102
+ [negative_pooled_prompt_embeds, add_text_embeds], dim=0
1103
+ )
1104
+ add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
1105
+ del negative_prompt_embeds, negative_pooled_prompt_embeds, negative_add_time_ids
1106
+
1107
+ prompt_embeds = prompt_embeds.to(device)
1108
+ add_text_embeds = add_text_embeds.to(device)
1109
+ add_time_ids = add_time_ids.to(device).repeat(
1110
+ batch_size * num_images_per_prompt, 1
1111
+ )
1112
+
1113
+ # 8. Denoising loop
1114
+ num_warmup_steps = max(
1115
+ len(timesteps) - num_inference_steps * self.scheduler.order, 0
1116
+ )
1117
+
1118
+ # 7.1 Apply denoising_end
1119
+ if (
1120
+ denoising_end is not None
1121
+ and isinstance(denoising_end, float)
1122
+ and denoising_end > 0
1123
+ and denoising_end < 1
1124
+ ):
1125
+ discrete_timestep_cutoff = int(
1126
+ round(
1127
+ self.scheduler.config.num_train_timesteps
1128
+ - (denoising_end * self.scheduler.config.num_train_timesteps)
1129
+ )
1130
+ )
1131
+ num_inference_steps = len(
1132
+ list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))
1133
+ )
1134
+ timesteps = timesteps[:num_inference_steps]
1135
+
1136
+ output_images = []
1137
+
1138
+ ############################################################### Phase 1 #################################################################
1139
+
1140
+ if self.lowvram:
1141
+ self.text_encoder.cpu()
1142
+ self.text_encoder_2.cpu()
1143
+
1144
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
1145
+ if image_lr == None:
1146
+ print("### Phase 1 Denoising ###")
1147
+ for i, t in enumerate(timesteps):
1148
+ if self.lowvram:
1149
+ self.vae.cpu()
1150
+ self.unet.to(device)
1151
+
1152
+ latents_for_view = latents
1153
+
1154
+ # expand the latents if we are doing classifier free guidance
1155
+ latent_model_input = (
1156
+ latents.repeat_interleave(2, dim=0)
1157
+ if do_classifier_free_guidance
1158
+ else latents
1159
+ )
1160
+ latent_model_input = self.scheduler.scale_model_input(
1161
+ latent_model_input, t
1162
+ )
1163
+
1164
+ # predict the noise residual
1165
+ added_cond_kwargs = {
1166
+ "text_embeds": add_text_embeds,
1167
+ "time_ids": add_time_ids,
1168
+ }
1169
+ noise_pred = self.unet(
1170
+ latent_model_input,
1171
+ t,
1172
+ encoder_hidden_states=prompt_embeds,
1173
+ cross_attention_kwargs=cross_attention_kwargs,
1174
+ added_cond_kwargs=added_cond_kwargs,
1175
+ return_dict=False,
1176
+ )[0]
1177
+
1178
+ # perform guidance
1179
+ if do_classifier_free_guidance:
1180
+ noise_pred_uncond, noise_pred_text = (
1181
+ noise_pred[::2],
1182
+ noise_pred[1::2],
1183
+ )
1184
+ noise_pred = noise_pred_uncond + guidance_scale * (
1185
+ noise_pred_text - noise_pred_uncond
1186
+ )
1187
+
1188
+ if do_classifier_free_guidance and guidance_rescale > 0.0:
1189
+ # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
1190
+ noise_pred = rescale_noise_cfg(
1191
+ noise_pred,
1192
+ noise_pred_text,
1193
+ guidance_rescale=guidance_rescale,
1194
+ )
1195
+
1196
+ # compute the previous noisy sample x_t -> x_t-1
1197
+ latents = self.scheduler.step(
1198
+ noise_pred, t, latents, **extra_step_kwargs, return_dict=False
1199
+ )[0]
1200
+
1201
+ # call the callback, if provided
1202
+ if i == len(timesteps) - 1 or (
1203
+ (i + 1) > num_warmup_steps
1204
+ and (i + 1) % self.scheduler.order == 0
1205
+ ):
1206
+ progress_bar.update()
1207
+ if callback is not None and i % callback_steps == 0:
1208
+ step_idx = i // getattr(self.scheduler, "order", 1)
1209
+ callback(step_idx, t, latents)
1210
+ del (
1211
+ latents_for_view,
1212
+ latent_model_input,
1213
+ noise_pred,
1214
+ noise_pred_text,
1215
+ noise_pred_uncond,
1216
+ )
1217
+ else:
1218
+ print("### Phase Encoding ###")
1219
+ self.vae.to(device)
1220
+ latents = self.vae.encode(image_lr)
1221
+ latents = latents.latent_dist.sample() * self.vae.config.scaling_factor
1222
+
1223
+ anchor_mean = latents.mean()
1224
+ anchor_std = latents.std()
1225
+ if self.lowvram:
1226
+ latents = latents.cpu()
1227
+ torch.cuda.empty_cache()
1228
+ if not output_type == "latent":
1229
+ # make sure the VAE is in float32 mode, as it overflows in float16
1230
+ needs_upcasting = (
1231
+ self.vae.dtype == torch.float16 and self.vae.config.force_upcast
1232
+ )
1233
+
1234
+ if self.lowvram:
1235
+ needs_upcasting = (
1236
+ False # use madebyollin/sdxl-vae-fp16-fix in lowvram mode!
1237
+ )
1238
+ self.unet.cpu()
1239
+ self.vae.to(device)
1240
+
1241
+ if needs_upcasting:
1242
+ self.upcast_vae()
1243
+ latents = latents.to(
1244
+ next(iter(self.vae.post_quant_conv.parameters())).dtype
1245
+ )
1246
+ if self.lowvram and multi_decoder:
1247
+ current_width_height = (
1248
+ self.unet.config.sample_size * self.vae_scale_factor
1249
+ )
1250
+ image = self.tiled_decode(
1251
+ latents, current_width_height, current_width_height
1252
+ )
1253
+ else:
1254
+ image = self.vae.decode(
1255
+ latents / self.vae.config.scaling_factor, return_dict=False
1256
+ )[0]
1257
+ # cast back to fp16 if needed
1258
+ if needs_upcasting:
1259
+ self.vae.to(dtype=torch.float16)
1260
+
1261
+ image = self.image_processor.postprocess(image, output_type=output_type)
1262
+ if show_image:
1263
+ plt.figure(figsize=(10, 10))
1264
+ plt.imshow(image[0])
1265
+ plt.axis("off") # Turn off axis numbers and ticks
1266
+ plt.show()
1267
+ output_images.append(image[0])
1268
+
1269
+ ####################################################### Phase 2+ #####################################################
1270
+ for current_scale_num in range(1, scale_num + 1):
1271
+ if self.lowvram:
1272
+ latents = latents.to(device)
1273
+ self.unet.to(device)
1274
+ torch.cuda.empty_cache()
1275
+ print("### Phase {} Denoising ###".format(current_scale_num))
1276
+ current_height = (
1277
+ self.unet.config.sample_size * self.vae_scale_factor * current_scale_num
1278
+ )
1279
+ current_width = (
1280
+ self.unet.config.sample_size * self.vae_scale_factor * current_scale_num
1281
+ )
1282
+ if height > width:
1283
+ current_width = int(current_width * aspect_ratio)
1284
+ else:
1285
+ current_height = int(current_height * aspect_ratio)
1286
+
1287
+ latents = F.interpolate(
1288
+ latents.to(device),
1289
+ size=(
1290
+ int(current_height / self.vae_scale_factor),
1291
+ int(current_width / self.vae_scale_factor),
1292
+ ),
1293
+ mode="bicubic",
1294
+ )
1295
+
1296
+ noise_latents = []
1297
+ noise = torch.randn_like(latents)
1298
+ for timestep in timesteps:
1299
+ noise_latent = self.scheduler.add_noise(
1300
+ latents, noise, timestep.unsqueeze(0)
1301
+ )
1302
+ noise_latents.append(noise_latent)
1303
+ latents = noise_latents[0]
1304
+
1305
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
1306
+ for i, t in enumerate(timesteps):
1307
+ count = torch.zeros_like(latents)
1308
+ value = torch.zeros_like(latents)
1309
+ cosine_factor = (
1310
+ 0.5
1311
+ * (
1312
+ 1
1313
+ + torch.cos(
1314
+ torch.pi
1315
+ * (self.scheduler.config.num_train_timesteps - t)
1316
+ / self.scheduler.config.num_train_timesteps
1317
+ )
1318
+ ).cpu()
1319
+ )
1320
+
1321
+ c1 = cosine_factor**cosine_scale_1
1322
+ latents = latents * (1 - c1) + noise_latents[i] * c1
1323
+
1324
+ ############################################# MultiDiffusion #############################################
1325
+
1326
+ views = self.get_views(
1327
+ current_height,
1328
+ current_width,
1329
+ stride=stride,
1330
+ window_size=self.unet.config.sample_size,
1331
+ random_jitter=True,
1332
+ )
1333
+ views_batch = [
1334
+ views[i : i + view_batch_size]
1335
+ for i in range(0, len(views), view_batch_size)
1336
+ ]
1337
+
1338
+ jitter_range = (self.unet.config.sample_size - stride) // 4
1339
+ latents_ = F.pad(
1340
+ latents,
1341
+ (jitter_range, jitter_range, jitter_range, jitter_range),
1342
+ "constant",
1343
+ 0,
1344
+ )
1345
+
1346
+ count_local = torch.zeros_like(latents_)
1347
+ value_local = torch.zeros_like(latents_)
1348
+
1349
+ for j, batch_view in enumerate(views_batch):
1350
+ vb_size = len(batch_view)
1351
+
1352
+ # get the latents corresponding to the current view coordinates
1353
+ latents_for_view = torch.cat(
1354
+ [
1355
+ latents_[:, :, h_start:h_end, w_start:w_end]
1356
+ for h_start, h_end, w_start, w_end in batch_view
1357
+ ]
1358
+ )
1359
+
1360
+ # expand the latents if we are doing classifier free guidance
1361
+ latent_model_input = latents_for_view
1362
+ latent_model_input = (
1363
+ latent_model_input.repeat_interleave(2, dim=0)
1364
+ if do_classifier_free_guidance
1365
+ else latent_model_input
1366
+ )
1367
+ latent_model_input = self.scheduler.scale_model_input(
1368
+ latent_model_input, t
1369
+ )
1370
+
1371
+ prompt_embeds_input = torch.cat([prompt_embeds] * vb_size)
1372
+ add_text_embeds_input = torch.cat([add_text_embeds] * vb_size)
1373
+ add_time_ids_input = []
1374
+ for h_start, h_end, w_start, w_end in batch_view:
1375
+ add_time_ids_ = add_time_ids.clone()
1376
+ add_time_ids_[:, 2] = h_start * self.vae_scale_factor
1377
+ add_time_ids_[:, 3] = w_start * self.vae_scale_factor
1378
+ add_time_ids_input.append(add_time_ids_)
1379
+ add_time_ids_input = torch.cat(add_time_ids_input)
1380
+
1381
+ # predict the noise residual
1382
+ added_cond_kwargs = {
1383
+ "text_embeds": add_text_embeds_input,
1384
+ "time_ids": add_time_ids_input,
1385
+ }
1386
+ noise_pred = self.unet(
1387
+ latent_model_input,
1388
+ t,
1389
+ encoder_hidden_states=prompt_embeds_input,
1390
+ cross_attention_kwargs=cross_attention_kwargs,
1391
+ added_cond_kwargs=added_cond_kwargs,
1392
+ return_dict=False,
1393
+ )[0]
1394
+
1395
+ if do_classifier_free_guidance:
1396
+ noise_pred_uncond, noise_pred_text = (
1397
+ noise_pred[::2],
1398
+ noise_pred[1::2],
1399
+ )
1400
+ noise_pred = noise_pred_uncond + guidance_scale * (
1401
+ noise_pred_text - noise_pred_uncond
1402
+ )
1403
+
1404
+ if do_classifier_free_guidance and guidance_rescale > 0.0:
1405
+ # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
1406
+ noise_pred = rescale_noise_cfg(
1407
+ noise_pred,
1408
+ noise_pred_text,
1409
+ guidance_rescale=guidance_rescale,
1410
+ )
1411
+
1412
+ # compute the previous noisy sample x_t -> x_t-1
1413
+ self.scheduler._init_step_index(t)
1414
+ latents_denoised_batch = self.scheduler.step(
1415
+ noise_pred,
1416
+ t,
1417
+ latents_for_view,
1418
+ **extra_step_kwargs,
1419
+ return_dict=False,
1420
+ )[0]
1421
+
1422
+ # extract value from batch
1423
+ for latents_view_denoised, (
1424
+ h_start,
1425
+ h_end,
1426
+ w_start,
1427
+ w_end,
1428
+ ) in zip(latents_denoised_batch.chunk(vb_size), batch_view):
1429
+ value_local[
1430
+ :, :, h_start:h_end, w_start:w_end
1431
+ ] += latents_view_denoised
1432
+ count_local[:, :, h_start:h_end, w_start:w_end] += 1
1433
+
1434
+ value_local = value_local[
1435
+ :,
1436
+ :,
1437
+ jitter_range : jitter_range
1438
+ + current_height // self.vae_scale_factor,
1439
+ jitter_range : jitter_range
1440
+ + current_width // self.vae_scale_factor,
1441
+ ]
1442
+ count_local = count_local[
1443
+ :,
1444
+ :,
1445
+ jitter_range : jitter_range
1446
+ + current_height // self.vae_scale_factor,
1447
+ jitter_range : jitter_range
1448
+ + current_width // self.vae_scale_factor,
1449
+ ]
1450
+
1451
+ c2 = cosine_factor**cosine_scale_2
1452
+
1453
+ value += value_local / count_local * (1 - c2)
1454
+ count += torch.ones_like(value_local) * (1 - c2)
1455
+
1456
+ ############################################# Dilated Sampling #############################################
1457
+
1458
+ views = [
1459
+ [h, w]
1460
+ for h in range(current_scale_num)
1461
+ for w in range(current_scale_num)
1462
+ ]
1463
+ views_batch = [
1464
+ views[i : i + view_batch_size]
1465
+ for i in range(0, len(views), view_batch_size)
1466
+ ]
1467
+
1468
+ h_pad = (
1469
+ current_scale_num - (latents.size(2) % current_scale_num)
1470
+ ) % current_scale_num
1471
+ w_pad = (
1472
+ current_scale_num - (latents.size(3) % current_scale_num)
1473
+ ) % current_scale_num
1474
+ latents_ = F.pad(latents, (w_pad, 0, h_pad, 0), "constant", 0)
1475
+
1476
+ count_global = torch.zeros_like(latents_)
1477
+ value_global = torch.zeros_like(latents_)
1478
+
1479
+ c3 = 0.99 * cosine_factor**cosine_scale_3 + 1e-2
1480
+ std_, mean_ = latents_.std(), latents_.mean()
1481
+ latents_gaussian = gaussian_filter(
1482
+ latents_,
1483
+ kernel_size=(2 * current_scale_num - 1),
1484
+ sigma=sigma * c3,
1485
+ )
1486
+ latents_gaussian = (
1487
+ latents_gaussian - latents_gaussian.mean()
1488
+ ) / latents_gaussian.std() * std_ + mean_
1489
+
1490
+ for j, batch_view in enumerate(views_batch):
1491
+ latents_for_view = torch.cat(
1492
+ [
1493
+ latents_[
1494
+ :, :, h::current_scale_num, w::current_scale_num
1495
+ ]
1496
+ for h, w in batch_view
1497
+ ]
1498
+ )
1499
+ latents_for_view_gaussian = torch.cat(
1500
+ [
1501
+ latents_gaussian[
1502
+ :, :, h::current_scale_num, w::current_scale_num
1503
+ ]
1504
+ for h, w in batch_view
1505
+ ]
1506
+ )
1507
+
1508
+ vb_size = latents_for_view.size(0)
1509
+
1510
+ # expand the latents if we are doing classifier free guidance
1511
+ latent_model_input = latents_for_view_gaussian
1512
+ latent_model_input = (
1513
+ latent_model_input.repeat_interleave(2, dim=0)
1514
+ if do_classifier_free_guidance
1515
+ else latent_model_input
1516
+ )
1517
+ latent_model_input = self.scheduler.scale_model_input(
1518
+ latent_model_input, t
1519
+ )
1520
+
1521
+ prompt_embeds_input = torch.cat([prompt_embeds] * vb_size)
1522
+ add_text_embeds_input = torch.cat([add_text_embeds] * vb_size)
1523
+ add_time_ids_input = torch.cat([add_time_ids] * vb_size)
1524
+
1525
+ # predict the noise residual
1526
+ added_cond_kwargs = {
1527
+ "text_embeds": add_text_embeds_input,
1528
+ "time_ids": add_time_ids_input,
1529
+ }
1530
+ noise_pred = self.unet(
1531
+ latent_model_input,
1532
+ t,
1533
+ encoder_hidden_states=prompt_embeds_input,
1534
+ cross_attention_kwargs=cross_attention_kwargs,
1535
+ added_cond_kwargs=added_cond_kwargs,
1536
+ return_dict=False,
1537
+ )[0]
1538
+
1539
+ if do_classifier_free_guidance:
1540
+ noise_pred_uncond, noise_pred_text = (
1541
+ noise_pred[::2],
1542
+ noise_pred[1::2],
1543
+ )
1544
+ noise_pred = noise_pred_uncond + guidance_scale * (
1545
+ noise_pred_text - noise_pred_uncond
1546
+ )
1547
+
1548
+ if do_classifier_free_guidance and guidance_rescale > 0.0:
1549
+ # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
1550
+ noise_pred = rescale_noise_cfg(
1551
+ noise_pred,
1552
+ noise_pred_text,
1553
+ guidance_rescale=guidance_rescale,
1554
+ )
1555
+
1556
+ # compute the previous noisy sample x_t -> x_t-1
1557
+ self.scheduler._init_step_index(t)
1558
+ latents_denoised_batch = self.scheduler.step(
1559
+ noise_pred,
1560
+ t,
1561
+ latents_for_view,
1562
+ **extra_step_kwargs,
1563
+ return_dict=False,
1564
+ )[0]
1565
+
1566
+ # extract value from batch
1567
+ for latents_view_denoised, (h, w) in zip(
1568
+ latents_denoised_batch.chunk(vb_size), batch_view
1569
+ ):
1570
+ value_global[
1571
+ :, :, h::current_scale_num, w::current_scale_num
1572
+ ] += latents_view_denoised
1573
+ count_global[
1574
+ :, :, h::current_scale_num, w::current_scale_num
1575
+ ] += 1
1576
+
1577
+ c2 = cosine_factor**cosine_scale_2
1578
+
1579
+ value_global = value_global[:, :, h_pad:, w_pad:]
1580
+
1581
+ value += value_global * c2
1582
+ count += torch.ones_like(value_global) * c2
1583
+
1584
+ ###########################################################
1585
+
1586
+ latents = torch.where(count > 0, value / count, value)
1587
+
1588
+ # call the callback, if provided
1589
+ if i == len(timesteps) - 1 or (
1590
+ (i + 1) > num_warmup_steps
1591
+ and (i + 1) % self.scheduler.order == 0
1592
+ ):
1593
+ progress_bar.update()
1594
+ if callback is not None and i % callback_steps == 0:
1595
+ step_idx = i // getattr(self.scheduler, "order", 1)
1596
+ callback(step_idx, t, latents)
1597
+
1598
+ #########################################################################################################################################
1599
+
1600
+ latents = (
1601
+ latents - latents.mean()
1602
+ ) / latents.std() * anchor_std + anchor_mean
1603
+ if self.lowvram:
1604
+ latents = latents.cpu()
1605
+ torch.cuda.empty_cache()
1606
+ if not output_type == "latent":
1607
+ # make sure the VAE is in float32 mode, as it overflows in float16
1608
+ needs_upcasting = (
1609
+ self.vae.dtype == torch.float16 and self.vae.config.force_upcast
1610
+ )
1611
+
1612
+ if self.lowvram:
1613
+ needs_upcasting = (
1614
+ False # use madebyollin/sdxl-vae-fp16-fix in lowvram mode!
1615
+ )
1616
+ self.unet.cpu()
1617
+ self.vae.to(device)
1618
+
1619
+ if needs_upcasting:
1620
+ self.upcast_vae()
1621
+ latents = latents.to(
1622
+ next(iter(self.vae.post_quant_conv.parameters())).dtype
1623
+ )
1624
+
1625
+ print("### Phase {} Decoding ###".format(current_scale_num))
1626
+ if multi_decoder:
1627
+ image = self.tiled_decode(
1628
+ latents, current_height, current_width
1629
+ )
1630
+ else:
1631
+ image = self.vae.decode(
1632
+ latents / self.vae.config.scaling_factor, return_dict=False
1633
+ )[0]
1634
+
1635
+ # cast back to fp16 if needed
1636
+ if needs_upcasting:
1637
+ self.vae.to(dtype=torch.float16)
1638
+ else:
1639
+ image = latents
1640
+
1641
+ if not output_type == "latent":
1642
+ image = self.image_processor.postprocess(
1643
+ image, output_type=output_type
1644
+ )
1645
+ if show_image:
1646
+ plt.figure(figsize=(10, 10))
1647
+ plt.imshow(image[0])
1648
+ plt.axis("off") # Turn off axis numbers and ticks
1649
+ plt.show()
1650
+ output_images.append(image[0])
1651
+
1652
+ # Offload all models
1653
+ self.maybe_free_model_hooks()
1654
+
1655
+ return output_images
1656
+
1657
+ # Overrride to properly handle the loading and unloading of the additional text encoder.
1658
+ def load_lora_weights(
1659
+ self,
1660
+ pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
1661
+ **kwargs,
1662
+ ):
1663
+ # We could have accessed the unet config from `lora_state_dict()` too. We pass
1664
+ # it here explicitly to be able to tell that it's coming from an SDXL
1665
+ # pipeline.
1666
+
1667
+ # Remove any existing hooks.
1668
+ if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
1669
+ from accelerate.hooks import (
1670
+ AlignDevicesHook,
1671
+ CpuOffload,
1672
+ remove_hook_from_module,
1673
+ )
1674
+ else:
1675
+ raise ImportError("Offloading requires `accelerate v0.17.0` or higher.")
1676
+
1677
+ is_model_cpu_offload = False
1678
+ is_sequential_cpu_offload = False
1679
+ recursive = False
1680
+ for _, component in self.components.items():
1681
+ if isinstance(component, torch.nn.Module):
1682
+ if hasattr(component, "_hf_hook"):
1683
+ is_model_cpu_offload = isinstance(
1684
+ getattr(component, "_hf_hook"), CpuOffload
1685
+ )
1686
+ is_sequential_cpu_offload = isinstance(
1687
+ getattr(component, "_hf_hook"), AlignDevicesHook
1688
+ )
1689
+ logger.info(
1690
+ "Accelerate hooks detected. Since you have called `load_lora_weights()`, the previous hooks will be first removed. Then the LoRA parameters will be loaded and the hooks will be applied again."
1691
+ )
1692
+ recursive = is_sequential_cpu_offload
1693
+ remove_hook_from_module(component, recurse=recursive)
1694
+ state_dict, network_alphas = self.lora_state_dict(
1695
+ pretrained_model_name_or_path_or_dict,
1696
+ unet_config=self.unet.config,
1697
+ **kwargs,
1698
+ )
1699
+ self.load_lora_into_unet(
1700
+ state_dict, network_alphas=network_alphas, unet=self.unet
1701
+ )
1702
+
1703
+ text_encoder_state_dict = {
1704
+ k: v for k, v in state_dict.items() if "text_encoder." in k
1705
+ }
1706
+ if len(text_encoder_state_dict) > 0:
1707
+ self.load_lora_into_text_encoder(
1708
+ text_encoder_state_dict,
1709
+ network_alphas=network_alphas,
1710
+ text_encoder=self.text_encoder,
1711
+ prefix="text_encoder",
1712
+ lora_scale=self.lora_scale,
1713
+ )
1714
+
1715
+ text_encoder_2_state_dict = {
1716
+ k: v for k, v in state_dict.items() if "text_encoder_2." in k
1717
+ }
1718
+ if len(text_encoder_2_state_dict) > 0:
1719
+ self.load_lora_into_text_encoder(
1720
+ text_encoder_2_state_dict,
1721
+ network_alphas=network_alphas,
1722
+ text_encoder=self.text_encoder_2,
1723
+ prefix="text_encoder_2",
1724
+ lora_scale=self.lora_scale,
1725
+ )
1726
+
1727
+ # Offload back.
1728
+ if is_model_cpu_offload:
1729
+ self.enable_model_cpu_offload()
1730
+ elif is_sequential_cpu_offload:
1731
+ self.enable_sequential_cpu_offload()
1732
+
1733
+ @classmethod
1734
+ def save_lora_weights(
1735
+ self,
1736
+ save_directory: Union[str, os.PathLike],
1737
+ unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
1738
+ text_encoder_lora_layers: Dict[
1739
+ str, Union[torch.nn.Module, torch.Tensor]
1740
+ ] = None,
1741
+ text_encoder_2_lora_layers: Dict[
1742
+ str, Union[torch.nn.Module, torch.Tensor]
1743
+ ] = None,
1744
+ is_main_process: bool = True,
1745
+ weight_name: str = None,
1746
+ save_function: Callable = None,
1747
+ safe_serialization: bool = True,
1748
+ ):
1749
+ state_dict = {}
1750
+
1751
+ def pack_weights(layers, prefix):
1752
+ layers_weights = (
1753
+ layers.state_dict() if isinstance(layers, torch.nn.Module) else layers
1754
+ )
1755
+ layers_state_dict = {
1756
+ f"{prefix}.{module_name}": param
1757
+ for module_name, param in layers_weights.items()
1758
+ }
1759
+ return layers_state_dict
1760
+
1761
+ if not (
1762
+ unet_lora_layers or text_encoder_lora_layers or text_encoder_2_lora_layers
1763
+ ):
1764
+ raise ValueError(
1765
+ "You must pass at least one of `unet_lora_layers`, `text_encoder_lora_layers` or `text_encoder_2_lora_layers`."
1766
+ )
1767
+
1768
+ if unet_lora_layers:
1769
+ state_dict.update(pack_weights(unet_lora_layers, "unet"))
1770
+
1771
+ if text_encoder_lora_layers and text_encoder_2_lora_layers:
1772
+ state_dict.update(pack_weights(text_encoder_lora_layers, "text_encoder"))
1773
+ state_dict.update(
1774
+ pack_weights(text_encoder_2_lora_layers, "text_encoder_2")
1775
+ )
1776
+
1777
+ self.write_lora_layers(
1778
+ state_dict=state_dict,
1779
+ save_directory=save_directory,
1780
+ is_main_process=is_main_process,
1781
+ weight_name=weight_name,
1782
+ save_function=save_function,
1783
+ safe_serialization=safe_serialization,
1784
+ )
1785
+
1786
+ def _remove_text_encoder_monkey_patch(self):
1787
+ self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder)
1788
+ self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder_2)
requirements.txt ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ gradio==4.8.0
2
+ git+https://github.com/huggingface/diffusers@4684ea2fe8d568f44c491068c3eb94aac27045f3
3
+ accelerate
4
+ transformers
5
+ --extra-index-url https://download.pytorch.org/whl/cu118
6
+ torch
7
+ torchvision
8
+ xformers
9
+ accelerate
10
+ invisible-watermark
11
+ huggingface-hub
12
+ hf-transfer
13
+ gradio-imageslider