Spaces:
Runtime error
Runtime error
import gradio as gr | |
def predict(video_in, image_in_video, image_in_img): | |
if video_in == None and image_in_video == None and image_in_img == None: | |
raise gr.Error("Please upload a video or image.") | |
if image_in_video or image_in_img: | |
print("image", image_in_video, image_in_img) | |
image = image_in_video or image_in_img | |
return image | |
return video_in | |
def toggle(choice): | |
if choice == "webcam": | |
return gr.update(visible=True, value=None), gr.update(visible=False, value=None) | |
else: | |
return gr.update(visible=False, value=None), gr.update(visible=True, value=None) | |
with gr.Blocks() as blocks: | |
gr.Markdown("### Video or Image? WebCam or Upload?""") | |
with gr.Tab("Video") as tab: | |
with gr.Row(): | |
with gr.Column(): | |
video_or_file_opt = gr.Radio(["webcam", "upload"], value="webcam", | |
label="How would you like to upload your video?") | |
video_in = gr.Video(source="webcam", include_audio=False) | |
video_or_file_opt.change(fn=lambda s: gr.update(source=s, value=None), inputs=video_or_file_opt, | |
outputs=video_in, queue=False, show_progress=False) | |
with gr.Column(): | |
video_out = gr.Video() | |
run_btn = gr.Button("Run") | |
run_btn.click(fn=predict, inputs=[video_in], outputs=[video_out]) | |
gr.Examples(fn=predict, examples=[], inputs=[ | |
video_in], outputs=[video_out]) | |
with gr.Tab("Image"): | |
with gr.Row(): | |
with gr.Column(): | |
image_or_file_opt = gr.Radio(["webcam", "file"], value="webcam", | |
label="How would you like to upload your image?") | |
image_in_video = gr.Image(source="webcam", type="filepath") | |
image_in_img = gr.Image( | |
source="upload", visible=False, type="filepath") | |
image_or_file_opt.change(fn=toggle, inputs=[image_or_file_opt], | |
outputs=[image_in_video, image_in_img], queue=False, show_progress=False) | |
with gr.Column(): | |
image_out = gr.Image() | |
run_btn = gr.Button("Run") | |
run_btn.click(fn=predict, inputs=[ | |
image_in_img, image_in_video], outputs=[image_out]) | |
gr.Examples(fn=predict, examples=[], inputs=[ | |
image_in_img, image_in_video], outputs=[image_out]) | |
blocks.queue() | |
blocks.launch() | |