File size: 2,673 Bytes
eb9ca51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
import torch
from nodes import MAX_RESOLUTION
class CLIPTextEncodeSDXLRefiner:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"ascore": ("FLOAT", {"default": 6.0, "min": 0.0, "max": 1000.0, "step": 0.01}),
"width": ("INT", {"default": 1024.0, "min": 0, "max": MAX_RESOLUTION}),
"height": ("INT", {"default": 1024.0, "min": 0, "max": MAX_RESOLUTION}),
"text": ("STRING", {"multiline": True}), "clip": ("CLIP", ),
}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "encode"
CATEGORY = "advanced/conditioning"
def encode(self, clip, ascore, width, height, text):
tokens = clip.tokenize(text)
cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True)
return ([[cond, {"pooled_output": pooled, "aesthetic_score": ascore, "width": width,"height": height}]], )
class CLIPTextEncodeSDXL:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"width": ("INT", {"default": 1024.0, "min": 0, "max": MAX_RESOLUTION}),
"height": ("INT", {"default": 1024.0, "min": 0, "max": MAX_RESOLUTION}),
"crop_w": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION}),
"crop_h": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION}),
"target_width": ("INT", {"default": 1024.0, "min": 0, "max": MAX_RESOLUTION}),
"target_height": ("INT", {"default": 1024.0, "min": 0, "max": MAX_RESOLUTION}),
"text_g": ("STRING", {"multiline": True, "default": "CLIP_G"}), "clip": ("CLIP", ),
"text_l": ("STRING", {"multiline": True, "default": "CLIP_L"}), "clip": ("CLIP", ),
}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "encode"
CATEGORY = "advanced/conditioning"
def encode(self, clip, width, height, crop_w, crop_h, target_width, target_height, text_g, text_l):
tokens = clip.tokenize(text_g)
tokens["l"] = clip.tokenize(text_l)["l"]
if len(tokens["l"]) != len(tokens["g"]):
empty = clip.tokenize("")
while len(tokens["l"]) < len(tokens["g"]):
tokens["l"] += empty["l"]
while len(tokens["l"]) > len(tokens["g"]):
tokens["g"] += empty["g"]
cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True)
return ([[cond, {"pooled_output": pooled, "width": width, "height": height, "crop_w": crop_w, "crop_h": crop_h, "target_width": target_width, "target_height": target_height}]], )
NODE_CLASS_MAPPINGS = {
"CLIPTextEncodeSDXLRefiner": CLIPTextEncodeSDXLRefiner,
"CLIPTextEncodeSDXL": CLIPTextEncodeSDXL,
}
|