|
|
|
import math |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import comfy.model_management |
|
|
|
from kornia.filters import canny |
|
|
|
|
|
class Canny: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": {"image": ("IMAGE",), |
|
"low_threshold": ("FLOAT", {"default": 0.4, "min": 0.01, "max": 0.99, "step": 0.01}), |
|
"high_threshold": ("FLOAT", {"default": 0.8, "min": 0.01, "max": 0.99, "step": 0.01}) |
|
}} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "detect_edge" |
|
|
|
CATEGORY = "image/preprocessors" |
|
|
|
def detect_edge(self, image, low_threshold, high_threshold): |
|
output = canny(image.to(comfy.model_management.get_torch_device()).movedim(-1, 1), low_threshold, high_threshold) |
|
img_out = output[1].to(comfy.model_management.intermediate_device()).repeat(1, 3, 1, 1).movedim(1, -1) |
|
return (img_out,) |
|
|
|
NODE_CLASS_MAPPINGS = { |
|
"Canny": Canny, |
|
} |
|
|