radames commited on
Commit
7951db8
·
1 Parent(s): c5e861e

layerdiffuse

Browse files
Files changed (21) hide show
  1. ComfyUI/custom_nodes/layerdiffuse/.gitignore +161 -0
  2. ComfyUI/custom_nodes/layerdiffuse/LICENSE +201 -0
  3. ComfyUI/custom_nodes/layerdiffuse/README.md +66 -0
  4. ComfyUI/custom_nodes/layerdiffuse/__init__.py +3 -0
  5. ComfyUI/custom_nodes/layerdiffuse/examples/layer_diffusion_cond_example.json +668 -0
  6. ComfyUI/custom_nodes/layerdiffuse/examples/layer_diffusion_cond_fg_all.json +951 -0
  7. ComfyUI/custom_nodes/layerdiffuse/examples/layer_diffusion_cond_joint_bg.json +723 -0
  8. ComfyUI/custom_nodes/layerdiffuse/examples/layer_diffusion_cond_joint_fg.json +480 -0
  9. ComfyUI/custom_nodes/layerdiffuse/examples/layer_diffusion_diff_bg.json +750 -0
  10. ComfyUI/custom_nodes/layerdiffuse/examples/layer_diffusion_diff_bg_stop_at.json +877 -0
  11. ComfyUI/custom_nodes/layerdiffuse/examples/layer_diffusion_diff_fg.json +686 -0
  12. ComfyUI/custom_nodes/layerdiffuse/examples/layer_diffusion_fg_example.json +733 -0
  13. ComfyUI/custom_nodes/layerdiffuse/examples/layer_diffusion_fg_example_rgba.json +511 -0
  14. ComfyUI/custom_nodes/layerdiffuse/examples/layer_diffusion_joint.json +703 -0
  15. ComfyUI/custom_nodes/layerdiffuse/layered_diffusion.py +683 -0
  16. ComfyUI/custom_nodes/layerdiffuse/lib_layerdiffusion/__init__.py +0 -0
  17. ComfyUI/custom_nodes/layerdiffuse/lib_layerdiffusion/attention_sharing.py +360 -0
  18. ComfyUI/custom_nodes/layerdiffuse/lib_layerdiffusion/enums.py +23 -0
  19. ComfyUI/custom_nodes/layerdiffuse/lib_layerdiffusion/models.py +318 -0
  20. ComfyUI/custom_nodes/layerdiffuse/lib_layerdiffusion/utils.py +135 -0
  21. ComfyUI/custom_nodes/layerdiffuse/requirements.txt +2 -0
ComfyUI/custom_nodes/layerdiffuse/.gitignore ADDED
@@ -0,0 +1,161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Byte-compiled / optimized / DLL files
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+
6
+ # C extensions
7
+ *.so
8
+
9
+ # Distribution / packaging
10
+ .Python
11
+ build/
12
+ develop-eggs/
13
+ dist/
14
+ downloads/
15
+ eggs/
16
+ .eggs/
17
+ lib/
18
+ lib64/
19
+ parts/
20
+ sdist/
21
+ var/
22
+ wheels/
23
+ share/python-wheels/
24
+ *.egg-info/
25
+ .installed.cfg
26
+ *.egg
27
+ MANIFEST
28
+
29
+ # PyInstaller
30
+ # Usually these files are written by a python script from a template
31
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
32
+ *.manifest
33
+ *.spec
34
+
35
+ # Installer logs
36
+ pip-log.txt
37
+ pip-delete-this-directory.txt
38
+
39
+ # Unit test / coverage reports
40
+ htmlcov/
41
+ .tox/
42
+ .nox/
43
+ .coverage
44
+ .coverage.*
45
+ .cache
46
+ nosetests.xml
47
+ coverage.xml
48
+ *.cover
49
+ *.py,cover
50
+ .hypothesis/
51
+ .pytest_cache/
52
+ cover/
53
+
54
+ # Translations
55
+ *.mo
56
+ *.pot
57
+
58
+ # Django stuff:
59
+ *.log
60
+ local_settings.py
61
+ db.sqlite3
62
+ db.sqlite3-journal
63
+
64
+ # Flask stuff:
65
+ instance/
66
+ .webassets-cache
67
+
68
+ # Scrapy stuff:
69
+ .scrapy
70
+
71
+ # Sphinx documentation
72
+ docs/_build/
73
+
74
+ # PyBuilder
75
+ .pybuilder/
76
+ target/
77
+
78
+ # Jupyter Notebook
79
+ .ipynb_checkpoints
80
+
81
+ # IPython
82
+ profile_default/
83
+ ipython_config.py
84
+
85
+ # pyenv
86
+ # For a library or package, you might want to ignore these files since the code is
87
+ # intended to run in multiple environments; otherwise, check them in:
88
+ # .python-version
89
+
90
+ # pipenv
91
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
92
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
93
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
94
+ # install all needed dependencies.
95
+ #Pipfile.lock
96
+
97
+ # poetry
98
+ # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
99
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
100
+ # commonly ignored for libraries.
101
+ # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
102
+ #poetry.lock
103
+
104
+ # pdm
105
+ # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
106
+ #pdm.lock
107
+ # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
108
+ # in version control.
109
+ # https://pdm.fming.dev/#use-with-ide
110
+ .pdm.toml
111
+
112
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
113
+ __pypackages__/
114
+
115
+ # Celery stuff
116
+ celerybeat-schedule
117
+ celerybeat.pid
118
+
119
+ # SageMath parsed files
120
+ *.sage.py
121
+
122
+ # Environments
123
+ .env
124
+ .venv
125
+ env/
126
+ venv/
127
+ ENV/
128
+ env.bak/
129
+ venv.bak/
130
+
131
+ # Spyder project settings
132
+ .spyderproject
133
+ .spyproject
134
+
135
+ # Rope project settings
136
+ .ropeproject
137
+
138
+ # mkdocs documentation
139
+ /site
140
+
141
+ # mypy
142
+ .mypy_cache/
143
+ .dmypy.json
144
+ dmypy.json
145
+
146
+ # Pyre type checker
147
+ .pyre/
148
+
149
+ # pytype static type analyzer
150
+ .pytype/
151
+
152
+ # Cython debug symbols
153
+ cython_debug/
154
+
155
+ # PyCharm
156
+ # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
157
+ # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
158
+ # and can be added to the global gitignore or merged into this file. For a more nuclear
159
+ # option (not recommended) you can uncomment the following to ignore the entire idea folder.
160
+ .idea/
161
+ .vscode/
ComfyUI/custom_nodes/layerdiffuse/LICENSE ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright [yyyy] [name of copyright owner]
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
ComfyUI/custom_nodes/layerdiffuse/README.md ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ComfyUI-layerdiffuse
2
+ ComfyUI implementation of https://github.com/layerdiffusion/LayerDiffuse.
3
+
4
+ ## Installation
5
+ Download the repository and unpack into the custom_nodes folder in the ComfyUI installation directory.
6
+
7
+ Or clone via GIT, starting from ComfyUI installation directory:
8
+ ```bash
9
+ cd custom_nodes
10
+ git clone git@github.com:huchenlei/ComfyUI-layerdiffuse.git
11
+ ```
12
+
13
+ Run `pip install -r requirements.txt` to install python dependencies. You might experience version conflict on diffusers if you have other extensions
14
+ that depends on other versions of diffusers. In this case, it is recommended to setup separate Python venvs.
15
+
16
+ ## Workflows
17
+ ### [Generate foreground](https://github.com/huchenlei/ComfyUI-layerdiffuse/blob/main/examples/layer_diffusion_fg_example_rgba.json)
18
+ ![rgba](https://github.com/huchenlei/ComfyUI-layerdiffuse/assets/20929282/5e6085e5-d997-4a0a-b589-257d65eb1eb2)
19
+
20
+ ### [Generate foreground (RGB + alpha)](https://github.com/huchenlei/ComfyUI-layerdiffuse/blob/main/examples/layer_diffusion_fg_example.json)
21
+ If you want more control of getting RGB image and alpha channel mask separately, you can use this workflow.
22
+ ![readme1](https://github.com/huchenlei/ComfyUI-layerdiffuse/assets/20929282/4825b81c-7089-4806-bce7-777229421707)
23
+
24
+ ### [Blending (FG/BG)](https://github.com/huchenlei/ComfyUI-layerdiffuse/blob/main/examples/layer_diffusion_cond_example.json)
25
+ Blending given FG
26
+ ![fg_cond](https://github.com/huchenlei/ComfyUI-layerdiffuse/assets/20929282/7f7dee80-6e57-4570-b304-d1f7e5dc3aad)
27
+
28
+ Blending given BG
29
+ ![bg_cond](https://github.com/huchenlei/ComfyUI-layerdiffuse/assets/20929282/e3a79218-6123-453b-a54b-2f338db1c12d)
30
+
31
+ ### [Extract FG from Blended + BG](https://github.com/huchenlei/ComfyUI-layerdiffuse/blob/main/examples/layer_diffusion_diff_fg.json)
32
+ ![diff_bg](https://github.com/huchenlei/ComfyUI-layerdiffuse/assets/20929282/45c7207d-72ff-4fb0-9c91-687040781837)
33
+
34
+ ### [Extract BG from Blended + FG](https://github.com/huchenlei/ComfyUI-layerdiffuse/blob/main/examples/layer_diffusion_diff_bg.json)
35
+ [Forge impl's sanity check](https://github.com/layerdiffuse/sd-forge-layerdiffuse#sanity-check) sets `Stop at` to 0.5 to get better quality BG.
36
+ This workflow might be inferior comparing to other object removal workflows.
37
+ ![diff_fg](https://github.com/huchenlei/ComfyUI-layerdiffuse/assets/20929282/05a10add-68b0-473a-acee-5853e4720322)
38
+
39
+ ### [Extract BG from Blended + FG (Stop at 0.5)](https://github.com/huchenlei/ComfyUI-layerdiffuse/blob/main/examples/layer_diffusion_diff_bg_stop_at.json)
40
+ In [SD Forge impl](https://github.com/layerdiffuse/sd-forge-layerdiffuse), there is a `stop at` param that determines when
41
+ layer diffuse should stop in the denosing process. In the background, what this param does is unapply the LoRA and c_concat cond after a certain step
42
+ threshold. This is hard/risky to implement directly in ComfyUI as it requires manually load a model that has every changes except the layer diffusion
43
+ change applied. A workaround in ComfyUI is to have another img2img pass on the layer diffuse result to simulate the effect of `stop at` param.
44
+ ![diff_fg_stop_at](https://github.com/huchenlei/ComfyUI-layerdiffuse/assets/20929282/e383c9d3-2d47-40c2-b764-b0bd48243ee8)
45
+
46
+
47
+ ### [Generate FG from BG combined](https://github.com/huchenlei/ComfyUI-layerdiffuse/blob/main/examples/layer_diffusion_cond_fg_all.json)
48
+ Combines previous workflows to generate blended and FG given BG. We found that there are some color variations in the extracted FG. Need to confirm
49
+ with layer diffusion authors on whether this is expected.
50
+ ![fg_all](https://github.com/huchenlei/ComfyUI-layerdiffuse/assets/20929282/f4c18585-961a-473a-a616-aa3776bacd41)
51
+
52
+ ### [2024-3-9] [Generate FG + Blended given BG](https://github.com/huchenlei/ComfyUI-layerdiffuse/blob/main/examples/layer_diffusion_cond_joint_bg.json)
53
+ Need batch size = 2N. Currently only for SD15.
54
+ ![sd15_cond_joint_bg](https://github.com/huchenlei/ComfyUI-layerdiffuse/assets/20929282/9bbfe5c1-14a0-421d-bf06-85e301bf8065)
55
+
56
+ ### [2024-3-9] [Generate BG + Blended given FG](https://github.com/huchenlei/ComfyUI-layerdiffuse/blob/main/examples/layer_diffusion_cond_joint_fg.json)
57
+ Need batch size = 2N. Currently only for SD15.
58
+ ![sd15_cond_joint_fg](https://github.com/huchenlei/ComfyUI-layerdiffuse/assets/20929282/65af8b38-cf4c-4667-b76f-3013a0be0a48)
59
+
60
+ ### [2024-3-9] [Generate BG + FG + Blended together](https://github.com/huchenlei/ComfyUI-layerdiffuse/blob/main/examples/layer_diffusion_joint.json)
61
+ Need batch size = 3N. Currently only for SD15.
62
+ ![sd15_joint](https://github.com/huchenlei/ComfyUI-layerdiffuse/assets/20929282/e5545809-e3fb-4683-acf5-8728195cb2bc)
63
+
64
+ ## Note
65
+ - Currently only SDXL/SD15 are supported. See https://github.com/layerdiffuse/sd-forge-layerdiffuse#model-notes for more details.
66
+ - To decode RGBA result, the generation dimension must be multiple of 64. Otherwise, you will get decode error: ![image](https://github.com/huchenlei/ComfyUI-layerdiffuse/assets/20929282/ff055f99-9297-4ff1-9a33-065aaadcf98e)
ComfyUI/custom_nodes/layerdiffuse/__init__.py ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ from .layered_diffusion import NODE_CLASS_MAPPINGS, NODE_DISPLAY_NAME_MAPPINGS
2
+
3
+ __all__ = ['NODE_CLASS_MAPPINGS', 'NODE_DISPLAY_NAME_MAPPINGS']
ComfyUI/custom_nodes/layerdiffuse/examples/layer_diffusion_cond_example.json ADDED
@@ -0,0 +1,668 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "last_node_id": 35,
3
+ "last_link_id": 52,
4
+ "nodes": [
5
+ {
6
+ "id": 4,
7
+ "type": "CheckpointLoaderSimple",
8
+ "pos": [
9
+ 5,
10
+ 479
11
+ ],
12
+ "size": {
13
+ "0": 315,
14
+ "1": 98
15
+ },
16
+ "flags": {},
17
+ "order": 0,
18
+ "mode": 0,
19
+ "outputs": [
20
+ {
21
+ "name": "MODEL",
22
+ "type": "MODEL",
23
+ "links": [
24
+ 38
25
+ ],
26
+ "slot_index": 0
27
+ },
28
+ {
29
+ "name": "CLIP",
30
+ "type": "CLIP",
31
+ "links": [
32
+ 3,
33
+ 5
34
+ ],
35
+ "slot_index": 1
36
+ },
37
+ {
38
+ "name": "VAE",
39
+ "type": "VAE",
40
+ "links": [
41
+ 22,
42
+ 49
43
+ ],
44
+ "slot_index": 2
45
+ }
46
+ ],
47
+ "properties": {
48
+ "Node name for S&R": "CheckpointLoaderSimple"
49
+ },
50
+ "widgets_values": [
51
+ "juggernautXL_v8Rundiffusion.safetensors"
52
+ ]
53
+ },
54
+ {
55
+ "id": 29,
56
+ "type": "VAEEncode",
57
+ "pos": [
58
+ 212,
59
+ -22
60
+ ],
61
+ "size": {
62
+ "0": 210,
63
+ "1": 46
64
+ },
65
+ "flags": {},
66
+ "order": 6,
67
+ "mode": 0,
68
+ "inputs": [
69
+ {
70
+ "name": "pixels",
71
+ "type": "IMAGE",
72
+ "link": 51
73
+ },
74
+ {
75
+ "name": "vae",
76
+ "type": "VAE",
77
+ "link": 49,
78
+ "slot_index": 1
79
+ }
80
+ ],
81
+ "outputs": [
82
+ {
83
+ "name": "LATENT",
84
+ "type": "LATENT",
85
+ "links": [
86
+ 47
87
+ ],
88
+ "shape": 3,
89
+ "slot_index": 0
90
+ }
91
+ ],
92
+ "properties": {
93
+ "Node name for S&R": "VAEEncode"
94
+ }
95
+ },
96
+ {
97
+ "id": 30,
98
+ "type": "LoadImage",
99
+ "pos": [
100
+ -363,
101
+ 209
102
+ ],
103
+ "size": {
104
+ "0": 315,
105
+ "1": 314
106
+ },
107
+ "flags": {},
108
+ "order": 1,
109
+ "mode": 0,
110
+ "outputs": [
111
+ {
112
+ "name": "IMAGE",
113
+ "type": "IMAGE",
114
+ "links": [
115
+ 50
116
+ ],
117
+ "shape": 3,
118
+ "slot_index": 0
119
+ },
120
+ {
121
+ "name": "MASK",
122
+ "type": "MASK",
123
+ "links": null,
124
+ "shape": 3
125
+ }
126
+ ],
127
+ "properties": {
128
+ "Node name for S&R": "LoadImage"
129
+ },
130
+ "widgets_values": [
131
+ "309219693-e7e2d80e-ffbe-4724-812a-5139a88027e3.png",
132
+ "image"
133
+ ]
134
+ },
135
+ {
136
+ "id": 20,
137
+ "type": "PreviewImage",
138
+ "pos": [
139
+ 1556,
140
+ 138
141
+ ],
142
+ "size": {
143
+ "0": 611.2340087890625,
144
+ "1": 633.9354858398438
145
+ },
146
+ "flags": {},
147
+ "order": 11,
148
+ "mode": 0,
149
+ "inputs": [
150
+ {
151
+ "name": "images",
152
+ "type": "IMAGE",
153
+ "link": 29
154
+ }
155
+ ],
156
+ "properties": {
157
+ "Node name for S&R": "PreviewImage"
158
+ }
159
+ },
160
+ {
161
+ "id": 6,
162
+ "type": "CLIPTextEncode",
163
+ "pos": [
164
+ 415,
165
+ 186
166
+ ],
167
+ "size": {
168
+ "0": 422.84503173828125,
169
+ "1": 164.31304931640625
170
+ },
171
+ "flags": {},
172
+ "order": 3,
173
+ "mode": 0,
174
+ "inputs": [
175
+ {
176
+ "name": "clip",
177
+ "type": "CLIP",
178
+ "link": 3
179
+ }
180
+ ],
181
+ "outputs": [
182
+ {
183
+ "name": "CONDITIONING",
184
+ "type": "CONDITIONING",
185
+ "links": [
186
+ 39
187
+ ],
188
+ "slot_index": 0
189
+ }
190
+ ],
191
+ "properties": {
192
+ "Node name for S&R": "CLIPTextEncode"
193
+ },
194
+ "widgets_values": [
195
+ "old man sitting, high quality\n\n"
196
+ ]
197
+ },
198
+ {
199
+ "id": 7,
200
+ "type": "CLIPTextEncode",
201
+ "pos": [
202
+ 413,
203
+ 389
204
+ ],
205
+ "size": {
206
+ "0": 425.27801513671875,
207
+ "1": 180.6060791015625
208
+ },
209
+ "flags": {},
210
+ "order": 4,
211
+ "mode": 0,
212
+ "inputs": [
213
+ {
214
+ "name": "clip",
215
+ "type": "CLIP",
216
+ "link": 5
217
+ }
218
+ ],
219
+ "outputs": [
220
+ {
221
+ "name": "CONDITIONING",
222
+ "type": "CONDITIONING",
223
+ "links": [
224
+ 40
225
+ ],
226
+ "slot_index": 0
227
+ }
228
+ ],
229
+ "properties": {
230
+ "Node name for S&R": "CLIPTextEncode"
231
+ },
232
+ "widgets_values": [
233
+ "text, watermark"
234
+ ]
235
+ },
236
+ {
237
+ "id": 34,
238
+ "type": "PreviewImage",
239
+ "pos": [
240
+ 213,
241
+ -346
242
+ ],
243
+ "size": {
244
+ "0": 210,
245
+ "1": 246
246
+ },
247
+ "flags": {},
248
+ "order": 7,
249
+ "mode": 0,
250
+ "inputs": [
251
+ {
252
+ "name": "images",
253
+ "type": "IMAGE",
254
+ "link": 52
255
+ }
256
+ ],
257
+ "properties": {
258
+ "Node name for S&R": "PreviewImage"
259
+ }
260
+ },
261
+ {
262
+ "id": 14,
263
+ "type": "VAEDecode",
264
+ "pos": [
265
+ 1275,
266
+ 198
267
+ ],
268
+ "size": {
269
+ "0": 210,
270
+ "1": 46
271
+ },
272
+ "flags": {},
273
+ "order": 10,
274
+ "mode": 0,
275
+ "inputs": [
276
+ {
277
+ "name": "samples",
278
+ "type": "LATENT",
279
+ "link": 21
280
+ },
281
+ {
282
+ "name": "vae",
283
+ "type": "VAE",
284
+ "link": 22,
285
+ "slot_index": 1
286
+ }
287
+ ],
288
+ "outputs": [
289
+ {
290
+ "name": "IMAGE",
291
+ "type": "IMAGE",
292
+ "links": [
293
+ 29
294
+ ],
295
+ "shape": 3,
296
+ "slot_index": 0
297
+ }
298
+ ],
299
+ "properties": {
300
+ "Node name for S&R": "VAEDecode"
301
+ }
302
+ },
303
+ {
304
+ "id": 3,
305
+ "type": "KSampler",
306
+ "pos": [
307
+ 913,
308
+ 181
309
+ ],
310
+ "size": {
311
+ "0": 315,
312
+ "1": 262
313
+ },
314
+ "flags": {},
315
+ "order": 9,
316
+ "mode": 0,
317
+ "inputs": [
318
+ {
319
+ "name": "model",
320
+ "type": "MODEL",
321
+ "link": 41
322
+ },
323
+ {
324
+ "name": "positive",
325
+ "type": "CONDITIONING",
326
+ "link": 46
327
+ },
328
+ {
329
+ "name": "negative",
330
+ "type": "CONDITIONING",
331
+ "link": 45
332
+ },
333
+ {
334
+ "name": "latent_image",
335
+ "type": "LATENT",
336
+ "link": 2
337
+ }
338
+ ],
339
+ "outputs": [
340
+ {
341
+ "name": "LATENT",
342
+ "type": "LATENT",
343
+ "links": [
344
+ 21
345
+ ],
346
+ "slot_index": 0
347
+ }
348
+ ],
349
+ "properties": {
350
+ "Node name for S&R": "KSampler"
351
+ },
352
+ "widgets_values": [
353
+ 100676796092754,
354
+ "randomize",
355
+ 20,
356
+ 8,
357
+ "euler",
358
+ "normal",
359
+ 1
360
+ ]
361
+ },
362
+ {
363
+ "id": 5,
364
+ "type": "EmptyLatentImage",
365
+ "pos": [
366
+ 475,
367
+ 666
368
+ ],
369
+ "size": {
370
+ "0": 315,
371
+ "1": 106
372
+ },
373
+ "flags": {},
374
+ "order": 2,
375
+ "mode": 0,
376
+ "outputs": [
377
+ {
378
+ "name": "LATENT",
379
+ "type": "LATENT",
380
+ "links": [
381
+ 2
382
+ ],
383
+ "slot_index": 0
384
+ }
385
+ ],
386
+ "properties": {
387
+ "Node name for S&R": "EmptyLatentImage"
388
+ },
389
+ "widgets_values": [
390
+ 1024,
391
+ 1024,
392
+ 1
393
+ ]
394
+ },
395
+ {
396
+ "id": 33,
397
+ "type": "ImageResize+",
398
+ "pos": [
399
+ -146,
400
+ -16
401
+ ],
402
+ "size": {
403
+ "0": 315,
404
+ "1": 170
405
+ },
406
+ "flags": {},
407
+ "order": 5,
408
+ "mode": 0,
409
+ "inputs": [
410
+ {
411
+ "name": "image",
412
+ "type": "IMAGE",
413
+ "link": 50
414
+ }
415
+ ],
416
+ "outputs": [
417
+ {
418
+ "name": "IMAGE",
419
+ "type": "IMAGE",
420
+ "links": [
421
+ 51,
422
+ 52
423
+ ],
424
+ "shape": 3,
425
+ "slot_index": 0
426
+ },
427
+ {
428
+ "name": "width",
429
+ "type": "INT",
430
+ "links": null,
431
+ "shape": 3
432
+ },
433
+ {
434
+ "name": "height",
435
+ "type": "INT",
436
+ "links": null,
437
+ "shape": 3
438
+ }
439
+ ],
440
+ "properties": {
441
+ "Node name for S&R": "ImageResize+"
442
+ },
443
+ "widgets_values": [
444
+ 1024,
445
+ 1024,
446
+ "nearest",
447
+ false
448
+ ]
449
+ },
450
+ {
451
+ "id": 28,
452
+ "type": "LayeredDiffusionCondApply",
453
+ "pos": [
454
+ 465,
455
+ -26
456
+ ],
457
+ "size": {
458
+ "0": 315,
459
+ "1": 142
460
+ },
461
+ "flags": {},
462
+ "order": 8,
463
+ "mode": 0,
464
+ "inputs": [
465
+ {
466
+ "name": "model",
467
+ "type": "MODEL",
468
+ "link": 38
469
+ },
470
+ {
471
+ "name": "cond",
472
+ "type": "CONDITIONING",
473
+ "link": 39
474
+ },
475
+ {
476
+ "name": "uncond",
477
+ "type": "CONDITIONING",
478
+ "link": 40
479
+ },
480
+ {
481
+ "name": "latent",
482
+ "type": "LATENT",
483
+ "link": 47
484
+ }
485
+ ],
486
+ "outputs": [
487
+ {
488
+ "name": "MODEL",
489
+ "type": "MODEL",
490
+ "links": [
491
+ 41
492
+ ],
493
+ "shape": 3,
494
+ "slot_index": 0
495
+ },
496
+ {
497
+ "name": "CONDITIONING",
498
+ "type": "CONDITIONING",
499
+ "links": [
500
+ 46
501
+ ],
502
+ "shape": 3,
503
+ "slot_index": 1
504
+ },
505
+ {
506
+ "name": "CONDITIONING",
507
+ "type": "CONDITIONING",
508
+ "links": [
509
+ 45
510
+ ],
511
+ "shape": 3,
512
+ "slot_index": 2
513
+ }
514
+ ],
515
+ "properties": {
516
+ "Node name for S&R": "LayeredDiffusionCondApply"
517
+ },
518
+ "widgets_values": [
519
+ "SDXL, Background",
520
+ 1
521
+ ],
522
+ "color": "#232",
523
+ "bgcolor": "#353"
524
+ }
525
+ ],
526
+ "links": [
527
+ [
528
+ 2,
529
+ 5,
530
+ 0,
531
+ 3,
532
+ 3,
533
+ "LATENT"
534
+ ],
535
+ [
536
+ 3,
537
+ 4,
538
+ 1,
539
+ 6,
540
+ 0,
541
+ "CLIP"
542
+ ],
543
+ [
544
+ 5,
545
+ 4,
546
+ 1,
547
+ 7,
548
+ 0,
549
+ "CLIP"
550
+ ],
551
+ [
552
+ 21,
553
+ 3,
554
+ 0,
555
+ 14,
556
+ 0,
557
+ "LATENT"
558
+ ],
559
+ [
560
+ 22,
561
+ 4,
562
+ 2,
563
+ 14,
564
+ 1,
565
+ "VAE"
566
+ ],
567
+ [
568
+ 29,
569
+ 14,
570
+ 0,
571
+ 20,
572
+ 0,
573
+ "IMAGE"
574
+ ],
575
+ [
576
+ 38,
577
+ 4,
578
+ 0,
579
+ 28,
580
+ 0,
581
+ "MODEL"
582
+ ],
583
+ [
584
+ 39,
585
+ 6,
586
+ 0,
587
+ 28,
588
+ 1,
589
+ "CONDITIONING"
590
+ ],
591
+ [
592
+ 40,
593
+ 7,
594
+ 0,
595
+ 28,
596
+ 2,
597
+ "CONDITIONING"
598
+ ],
599
+ [
600
+ 41,
601
+ 28,
602
+ 0,
603
+ 3,
604
+ 0,
605
+ "MODEL"
606
+ ],
607
+ [
608
+ 45,
609
+ 28,
610
+ 2,
611
+ 3,
612
+ 2,
613
+ "CONDITIONING"
614
+ ],
615
+ [
616
+ 46,
617
+ 28,
618
+ 1,
619
+ 3,
620
+ 1,
621
+ "CONDITIONING"
622
+ ],
623
+ [
624
+ 47,
625
+ 29,
626
+ 0,
627
+ 28,
628
+ 3,
629
+ "LATENT"
630
+ ],
631
+ [
632
+ 49,
633
+ 4,
634
+ 2,
635
+ 29,
636
+ 1,
637
+ "VAE"
638
+ ],
639
+ [
640
+ 50,
641
+ 30,
642
+ 0,
643
+ 33,
644
+ 0,
645
+ "IMAGE"
646
+ ],
647
+ [
648
+ 51,
649
+ 33,
650
+ 0,
651
+ 29,
652
+ 0,
653
+ "IMAGE"
654
+ ],
655
+ [
656
+ 52,
657
+ 33,
658
+ 0,
659
+ 34,
660
+ 0,
661
+ "IMAGE"
662
+ ]
663
+ ],
664
+ "groups": [],
665
+ "config": {},
666
+ "extra": {},
667
+ "version": 0.4
668
+ }
ComfyUI/custom_nodes/layerdiffuse/examples/layer_diffusion_cond_fg_all.json ADDED
@@ -0,0 +1,951 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "last_node_id": 56,
3
+ "last_link_id": 104,
4
+ "nodes": [
5
+ {
6
+ "id": 14,
7
+ "type": "VAEDecode",
8
+ "pos": [
9
+ 1286,
10
+ 187
11
+ ],
12
+ "size": {
13
+ "0": 210,
14
+ "1": 46
15
+ },
16
+ "flags": {},
17
+ "order": 12,
18
+ "mode": 0,
19
+ "inputs": [
20
+ {
21
+ "name": "samples",
22
+ "type": "LATENT",
23
+ "link": 21
24
+ },
25
+ {
26
+ "name": "vae",
27
+ "type": "VAE",
28
+ "link": 22,
29
+ "slot_index": 1
30
+ }
31
+ ],
32
+ "outputs": [
33
+ {
34
+ "name": "IMAGE",
35
+ "type": "IMAGE",
36
+ "links": [
37
+ 65
38
+ ],
39
+ "shape": 3,
40
+ "slot_index": 0
41
+ }
42
+ ],
43
+ "properties": {
44
+ "Node name for S&R": "VAEDecode"
45
+ }
46
+ },
47
+ {
48
+ "id": 40,
49
+ "type": "LayeredDiffusionDecodeRGBA",
50
+ "pos": [
51
+ 1533,
52
+ 189
53
+ ],
54
+ "size": {
55
+ "0": 243.60000610351562,
56
+ "1": 102
57
+ },
58
+ "flags": {},
59
+ "order": 13,
60
+ "mode": 0,
61
+ "inputs": [
62
+ {
63
+ "name": "samples",
64
+ "type": "LATENT",
65
+ "link": 67
66
+ },
67
+ {
68
+ "name": "images",
69
+ "type": "IMAGE",
70
+ "link": 65
71
+ }
72
+ ],
73
+ "outputs": [
74
+ {
75
+ "name": "IMAGE",
76
+ "type": "IMAGE",
77
+ "links": [
78
+ 66
79
+ ],
80
+ "shape": 3,
81
+ "slot_index": 0
82
+ }
83
+ ],
84
+ "properties": {
85
+ "Node name for S&R": "LayeredDiffusionDecodeRGBA"
86
+ },
87
+ "widgets_values": [
88
+ "SDXL",
89
+ 16
90
+ ],
91
+ "color": "#232",
92
+ "bgcolor": "#353"
93
+ },
94
+ {
95
+ "id": 47,
96
+ "type": "VAEDecode",
97
+ "pos": [
98
+ 1360,
99
+ 900
100
+ ],
101
+ "size": {
102
+ "0": 210,
103
+ "1": 46
104
+ },
105
+ "flags": {},
106
+ "order": 8,
107
+ "mode": 0,
108
+ "inputs": [
109
+ {
110
+ "name": "samples",
111
+ "type": "LATENT",
112
+ "link": 74
113
+ },
114
+ {
115
+ "name": "vae",
116
+ "type": "VAE",
117
+ "link": 104,
118
+ "slot_index": 1
119
+ }
120
+ ],
121
+ "outputs": [
122
+ {
123
+ "name": "IMAGE",
124
+ "type": "IMAGE",
125
+ "links": [
126
+ 96
127
+ ],
128
+ "shape": 3,
129
+ "slot_index": 0
130
+ }
131
+ ],
132
+ "properties": {
133
+ "Node name for S&R": "VAEDecode"
134
+ }
135
+ },
136
+ {
137
+ "id": 49,
138
+ "type": "VAEEncode",
139
+ "pos": [
140
+ 280,
141
+ 690
142
+ ],
143
+ "size": {
144
+ "0": 210,
145
+ "1": 46
146
+ },
147
+ "flags": {},
148
+ "order": 5,
149
+ "mode": 0,
150
+ "inputs": [
151
+ {
152
+ "name": "pixels",
153
+ "type": "IMAGE",
154
+ "link": 77
155
+ },
156
+ {
157
+ "name": "vae",
158
+ "type": "VAE",
159
+ "link": 102,
160
+ "slot_index": 1
161
+ }
162
+ ],
163
+ "outputs": [
164
+ {
165
+ "name": "LATENT",
166
+ "type": "LATENT",
167
+ "links": [
168
+ 89,
169
+ 97
170
+ ],
171
+ "shape": 3,
172
+ "slot_index": 0
173
+ }
174
+ ],
175
+ "properties": {
176
+ "Node name for S&R": "VAEEncode"
177
+ }
178
+ },
179
+ {
180
+ "id": 56,
181
+ "type": "PreviewImage",
182
+ "pos": [
183
+ 1800,
184
+ 900
185
+ ],
186
+ "size": {
187
+ "0": 611.2340087890625,
188
+ "1": 633.9354858398438
189
+ },
190
+ "flags": {},
191
+ "order": 10,
192
+ "mode": 0,
193
+ "inputs": [
194
+ {
195
+ "name": "images",
196
+ "type": "IMAGE",
197
+ "link": 96
198
+ }
199
+ ],
200
+ "properties": {
201
+ "Node name for S&R": "PreviewImage"
202
+ }
203
+ },
204
+ {
205
+ "id": 6,
206
+ "type": "CLIPTextEncode",
207
+ "pos": [
208
+ 415,
209
+ 186
210
+ ],
211
+ "size": {
212
+ "0": 422.84503173828125,
213
+ "1": 164.31304931640625
214
+ },
215
+ "flags": {},
216
+ "order": 3,
217
+ "mode": 0,
218
+ "inputs": [
219
+ {
220
+ "name": "clip",
221
+ "type": "CLIP",
222
+ "link": 3
223
+ }
224
+ ],
225
+ "outputs": [
226
+ {
227
+ "name": "CONDITIONING",
228
+ "type": "CONDITIONING",
229
+ "links": [
230
+ 56,
231
+ 99
232
+ ],
233
+ "slot_index": 0
234
+ }
235
+ ],
236
+ "properties": {
237
+ "Node name for S&R": "CLIPTextEncode"
238
+ },
239
+ "widgets_values": [
240
+ "an old man sitting, high quality\n\n"
241
+ ]
242
+ },
243
+ {
244
+ "id": 7,
245
+ "type": "CLIPTextEncode",
246
+ "pos": [
247
+ 413,
248
+ 389
249
+ ],
250
+ "size": {
251
+ "0": 425.27801513671875,
252
+ "1": 180.6060791015625
253
+ },
254
+ "flags": {},
255
+ "order": 4,
256
+ "mode": 0,
257
+ "inputs": [
258
+ {
259
+ "name": "clip",
260
+ "type": "CLIP",
261
+ "link": 5
262
+ }
263
+ ],
264
+ "outputs": [
265
+ {
266
+ "name": "CONDITIONING",
267
+ "type": "CONDITIONING",
268
+ "links": [
269
+ 57,
270
+ 100
271
+ ],
272
+ "slot_index": 0
273
+ }
274
+ ],
275
+ "properties": {
276
+ "Node name for S&R": "CLIPTextEncode"
277
+ },
278
+ "widgets_values": [
279
+ "text, watermark"
280
+ ]
281
+ },
282
+ {
283
+ "id": 42,
284
+ "type": "KSampler",
285
+ "pos": [
286
+ 990,
287
+ 850
288
+ ],
289
+ "size": {
290
+ "0": 315,
291
+ "1": 262
292
+ },
293
+ "flags": {},
294
+ "order": 7,
295
+ "mode": 0,
296
+ "inputs": [
297
+ {
298
+ "name": "model",
299
+ "type": "MODEL",
300
+ "link": 93
301
+ },
302
+ {
303
+ "name": "positive",
304
+ "type": "CONDITIONING",
305
+ "link": 94
306
+ },
307
+ {
308
+ "name": "negative",
309
+ "type": "CONDITIONING",
310
+ "link": 95
311
+ },
312
+ {
313
+ "name": "latent_image",
314
+ "type": "LATENT",
315
+ "link": 71
316
+ }
317
+ ],
318
+ "outputs": [
319
+ {
320
+ "name": "LATENT",
321
+ "type": "LATENT",
322
+ "links": [
323
+ 74,
324
+ 98
325
+ ],
326
+ "slot_index": 0
327
+ }
328
+ ],
329
+ "properties": {
330
+ "Node name for S&R": "KSampler"
331
+ },
332
+ "widgets_values": [
333
+ 216474886443753,
334
+ "randomize",
335
+ 20,
336
+ 8,
337
+ "euler",
338
+ "normal",
339
+ 1
340
+ ]
341
+ },
342
+ {
343
+ "id": 3,
344
+ "type": "KSampler",
345
+ "pos": [
346
+ 913,
347
+ 182
348
+ ],
349
+ "size": {
350
+ "0": 315,
351
+ "1": 262
352
+ },
353
+ "flags": {},
354
+ "order": 11,
355
+ "mode": 0,
356
+ "inputs": [
357
+ {
358
+ "name": "model",
359
+ "type": "MODEL",
360
+ "link": 62
361
+ },
362
+ {
363
+ "name": "positive",
364
+ "type": "CONDITIONING",
365
+ "link": 63
366
+ },
367
+ {
368
+ "name": "negative",
369
+ "type": "CONDITIONING",
370
+ "link": 64
371
+ },
372
+ {
373
+ "name": "latent_image",
374
+ "type": "LATENT",
375
+ "link": 101,
376
+ "slot_index": 3
377
+ }
378
+ ],
379
+ "outputs": [
380
+ {
381
+ "name": "LATENT",
382
+ "type": "LATENT",
383
+ "links": [
384
+ 21,
385
+ 67
386
+ ],
387
+ "slot_index": 0
388
+ }
389
+ ],
390
+ "properties": {
391
+ "Node name for S&R": "KSampler"
392
+ },
393
+ "widgets_values": [
394
+ 137168876920770,
395
+ "randomize",
396
+ 20,
397
+ 8,
398
+ "euler",
399
+ "normal",
400
+ 1
401
+ ]
402
+ },
403
+ {
404
+ "id": 4,
405
+ "type": "CheckpointLoaderSimple",
406
+ "pos": [
407
+ -54,
408
+ 488
409
+ ],
410
+ "size": {
411
+ "0": 315,
412
+ "1": 98
413
+ },
414
+ "flags": {},
415
+ "order": 0,
416
+ "mode": 0,
417
+ "outputs": [
418
+ {
419
+ "name": "MODEL",
420
+ "type": "MODEL",
421
+ "links": [
422
+ 55,
423
+ 103
424
+ ],
425
+ "slot_index": 0
426
+ },
427
+ {
428
+ "name": "CLIP",
429
+ "type": "CLIP",
430
+ "links": [
431
+ 3,
432
+ 5
433
+ ],
434
+ "slot_index": 1
435
+ },
436
+ {
437
+ "name": "VAE",
438
+ "type": "VAE",
439
+ "links": [
440
+ 22,
441
+ 102,
442
+ 104
443
+ ],
444
+ "slot_index": 2
445
+ }
446
+ ],
447
+ "properties": {
448
+ "Node name for S&R": "CheckpointLoaderSimple"
449
+ },
450
+ "widgets_values": [
451
+ "juggernautXL_v8Rundiffusion.safetensors"
452
+ ]
453
+ },
454
+ {
455
+ "id": 50,
456
+ "type": "LoadImage",
457
+ "pos": [
458
+ -59,
459
+ 686
460
+ ],
461
+ "size": {
462
+ "0": 315,
463
+ "1": 314
464
+ },
465
+ "flags": {},
466
+ "order": 1,
467
+ "mode": 0,
468
+ "outputs": [
469
+ {
470
+ "name": "IMAGE",
471
+ "type": "IMAGE",
472
+ "links": [
473
+ 77
474
+ ],
475
+ "shape": 3,
476
+ "slot_index": 0
477
+ },
478
+ {
479
+ "name": "MASK",
480
+ "type": "MASK",
481
+ "links": null,
482
+ "shape": 3
483
+ }
484
+ ],
485
+ "properties": {
486
+ "Node name for S&R": "LoadImage"
487
+ },
488
+ "widgets_values": [
489
+ "chair.png",
490
+ "image"
491
+ ]
492
+ },
493
+ {
494
+ "id": 44,
495
+ "type": "EmptyLatentImage",
496
+ "pos": [
497
+ 524,
498
+ 944
499
+ ],
500
+ "size": {
501
+ "0": 315,
502
+ "1": 106
503
+ },
504
+ "flags": {},
505
+ "order": 2,
506
+ "mode": 0,
507
+ "outputs": [
508
+ {
509
+ "name": "LATENT",
510
+ "type": "LATENT",
511
+ "links": [
512
+ 71,
513
+ 101
514
+ ],
515
+ "slot_index": 0
516
+ }
517
+ ],
518
+ "properties": {
519
+ "Node name for S&R": "EmptyLatentImage"
520
+ },
521
+ "widgets_values": [
522
+ 1024,
523
+ 1024,
524
+ 1
525
+ ]
526
+ },
527
+ {
528
+ "id": 55,
529
+ "type": "LayeredDiffusionCondApply",
530
+ "pos": [
531
+ 530,
532
+ 680
533
+ ],
534
+ "size": {
535
+ "0": 315,
536
+ "1": 142
537
+ },
538
+ "flags": {},
539
+ "order": 6,
540
+ "mode": 0,
541
+ "inputs": [
542
+ {
543
+ "name": "model",
544
+ "type": "MODEL",
545
+ "link": 103,
546
+ "slot_index": 0
547
+ },
548
+ {
549
+ "name": "cond",
550
+ "type": "CONDITIONING",
551
+ "link": 99
552
+ },
553
+ {
554
+ "name": "uncond",
555
+ "type": "CONDITIONING",
556
+ "link": 100
557
+ },
558
+ {
559
+ "name": "latent",
560
+ "type": "LATENT",
561
+ "link": 89,
562
+ "slot_index": 3
563
+ }
564
+ ],
565
+ "outputs": [
566
+ {
567
+ "name": "MODEL",
568
+ "type": "MODEL",
569
+ "links": [
570
+ 93
571
+ ],
572
+ "shape": 3,
573
+ "slot_index": 0
574
+ },
575
+ {
576
+ "name": "CONDITIONING",
577
+ "type": "CONDITIONING",
578
+ "links": [
579
+ 94
580
+ ],
581
+ "shape": 3,
582
+ "slot_index": 1
583
+ },
584
+ {
585
+ "name": "CONDITIONING",
586
+ "type": "CONDITIONING",
587
+ "links": [
588
+ 95
589
+ ],
590
+ "shape": 3,
591
+ "slot_index": 2
592
+ }
593
+ ],
594
+ "properties": {
595
+ "Node name for S&R": "LayeredDiffusionCondApply"
596
+ },
597
+ "widgets_values": [
598
+ "SDXL, Background",
599
+ 1
600
+ ],
601
+ "color": "#232",
602
+ "bgcolor": "#353"
603
+ },
604
+ {
605
+ "id": 37,
606
+ "type": "LayeredDiffusionDiffApply",
607
+ "pos": [
608
+ 457,
609
+ -37
610
+ ],
611
+ "size": {
612
+ "0": 342.5999755859375,
613
+ "1": 162
614
+ },
615
+ "flags": {},
616
+ "order": 9,
617
+ "mode": 0,
618
+ "inputs": [
619
+ {
620
+ "name": "model",
621
+ "type": "MODEL",
622
+ "link": 55,
623
+ "slot_index": 0
624
+ },
625
+ {
626
+ "name": "cond",
627
+ "type": "CONDITIONING",
628
+ "link": 56,
629
+ "slot_index": 1
630
+ },
631
+ {
632
+ "name": "uncond",
633
+ "type": "CONDITIONING",
634
+ "link": 57,
635
+ "slot_index": 2
636
+ },
637
+ {
638
+ "name": "blended_latent",
639
+ "type": "LATENT",
640
+ "link": 98
641
+ },
642
+ {
643
+ "name": "latent",
644
+ "type": "LATENT",
645
+ "link": 97
646
+ }
647
+ ],
648
+ "outputs": [
649
+ {
650
+ "name": "MODEL",
651
+ "type": "MODEL",
652
+ "links": [
653
+ 62
654
+ ],
655
+ "shape": 3,
656
+ "slot_index": 0
657
+ },
658
+ {
659
+ "name": "CONDITIONING",
660
+ "type": "CONDITIONING",
661
+ "links": [
662
+ 63
663
+ ],
664
+ "shape": 3,
665
+ "slot_index": 1
666
+ },
667
+ {
668
+ "name": "CONDITIONING",
669
+ "type": "CONDITIONING",
670
+ "links": [
671
+ 64
672
+ ],
673
+ "shape": 3,
674
+ "slot_index": 2
675
+ }
676
+ ],
677
+ "properties": {
678
+ "Node name for S&R": "LayeredDiffusionDiffApply"
679
+ },
680
+ "widgets_values": [
681
+ "SDXL, Background",
682
+ 1
683
+ ],
684
+ "color": "#232",
685
+ "bgcolor": "#353"
686
+ },
687
+ {
688
+ "id": 20,
689
+ "type": "PreviewImage",
690
+ "pos": [
691
+ 1815,
692
+ 194
693
+ ],
694
+ "size": {
695
+ "0": 611.2340087890625,
696
+ "1": 633.9354858398438
697
+ },
698
+ "flags": {},
699
+ "order": 14,
700
+ "mode": 0,
701
+ "inputs": [
702
+ {
703
+ "name": "images",
704
+ "type": "IMAGE",
705
+ "link": 66
706
+ }
707
+ ],
708
+ "properties": {
709
+ "Node name for S&R": "PreviewImage"
710
+ }
711
+ }
712
+ ],
713
+ "links": [
714
+ [
715
+ 3,
716
+ 4,
717
+ 1,
718
+ 6,
719
+ 0,
720
+ "CLIP"
721
+ ],
722
+ [
723
+ 5,
724
+ 4,
725
+ 1,
726
+ 7,
727
+ 0,
728
+ "CLIP"
729
+ ],
730
+ [
731
+ 21,
732
+ 3,
733
+ 0,
734
+ 14,
735
+ 0,
736
+ "LATENT"
737
+ ],
738
+ [
739
+ 22,
740
+ 4,
741
+ 2,
742
+ 14,
743
+ 1,
744
+ "VAE"
745
+ ],
746
+ [
747
+ 55,
748
+ 4,
749
+ 0,
750
+ 37,
751
+ 0,
752
+ "MODEL"
753
+ ],
754
+ [
755
+ 56,
756
+ 6,
757
+ 0,
758
+ 37,
759
+ 1,
760
+ "CONDITIONING"
761
+ ],
762
+ [
763
+ 57,
764
+ 7,
765
+ 0,
766
+ 37,
767
+ 2,
768
+ "CONDITIONING"
769
+ ],
770
+ [
771
+ 62,
772
+ 37,
773
+ 0,
774
+ 3,
775
+ 0,
776
+ "MODEL"
777
+ ],
778
+ [
779
+ 63,
780
+ 37,
781
+ 1,
782
+ 3,
783
+ 1,
784
+ "CONDITIONING"
785
+ ],
786
+ [
787
+ 64,
788
+ 37,
789
+ 2,
790
+ 3,
791
+ 2,
792
+ "CONDITIONING"
793
+ ],
794
+ [
795
+ 65,
796
+ 14,
797
+ 0,
798
+ 40,
799
+ 1,
800
+ "IMAGE"
801
+ ],
802
+ [
803
+ 66,
804
+ 40,
805
+ 0,
806
+ 20,
807
+ 0,
808
+ "IMAGE"
809
+ ],
810
+ [
811
+ 67,
812
+ 3,
813
+ 0,
814
+ 40,
815
+ 0,
816
+ "LATENT"
817
+ ],
818
+ [
819
+ 71,
820
+ 44,
821
+ 0,
822
+ 42,
823
+ 3,
824
+ "LATENT"
825
+ ],
826
+ [
827
+ 74,
828
+ 42,
829
+ 0,
830
+ 47,
831
+ 0,
832
+ "LATENT"
833
+ ],
834
+ [
835
+ 77,
836
+ 50,
837
+ 0,
838
+ 49,
839
+ 0,
840
+ "IMAGE"
841
+ ],
842
+ [
843
+ 89,
844
+ 49,
845
+ 0,
846
+ 55,
847
+ 3,
848
+ "LATENT"
849
+ ],
850
+ [
851
+ 93,
852
+ 55,
853
+ 0,
854
+ 42,
855
+ 0,
856
+ "MODEL"
857
+ ],
858
+ [
859
+ 94,
860
+ 55,
861
+ 1,
862
+ 42,
863
+ 1,
864
+ "CONDITIONING"
865
+ ],
866
+ [
867
+ 95,
868
+ 55,
869
+ 2,
870
+ 42,
871
+ 2,
872
+ "CONDITIONING"
873
+ ],
874
+ [
875
+ 96,
876
+ 47,
877
+ 0,
878
+ 56,
879
+ 0,
880
+ "IMAGE"
881
+ ],
882
+ [
883
+ 97,
884
+ 49,
885
+ 0,
886
+ 37,
887
+ 4,
888
+ "LATENT"
889
+ ],
890
+ [
891
+ 98,
892
+ 42,
893
+ 0,
894
+ 37,
895
+ 3,
896
+ "LATENT"
897
+ ],
898
+ [
899
+ 99,
900
+ 6,
901
+ 0,
902
+ 55,
903
+ 1,
904
+ "CONDITIONING"
905
+ ],
906
+ [
907
+ 100,
908
+ 7,
909
+ 0,
910
+ 55,
911
+ 2,
912
+ "CONDITIONING"
913
+ ],
914
+ [
915
+ 101,
916
+ 44,
917
+ 0,
918
+ 3,
919
+ 3,
920
+ "LATENT"
921
+ ],
922
+ [
923
+ 102,
924
+ 4,
925
+ 2,
926
+ 49,
927
+ 1,
928
+ "VAE"
929
+ ],
930
+ [
931
+ 103,
932
+ 4,
933
+ 0,
934
+ 55,
935
+ 0,
936
+ "MODEL"
937
+ ],
938
+ [
939
+ 104,
940
+ 4,
941
+ 2,
942
+ 47,
943
+ 1,
944
+ "VAE"
945
+ ]
946
+ ],
947
+ "groups": [],
948
+ "config": {},
949
+ "extra": {},
950
+ "version": 0.4
951
+ }
ComfyUI/custom_nodes/layerdiffuse/examples/layer_diffusion_cond_joint_bg.json ADDED
@@ -0,0 +1,723 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "last_node_id": 53,
3
+ "last_link_id": 88,
4
+ "nodes": [
5
+ {
6
+ "id": 33,
7
+ "type": "ImageResize+",
8
+ "pos": [
9
+ 50,
10
+ -10
11
+ ],
12
+ "size": {
13
+ "0": 315,
14
+ "1": 170
15
+ },
16
+ "flags": {},
17
+ "order": 5,
18
+ "mode": 0,
19
+ "inputs": [
20
+ {
21
+ "name": "image",
22
+ "type": "IMAGE",
23
+ "link": 50
24
+ }
25
+ ],
26
+ "outputs": [
27
+ {
28
+ "name": "IMAGE",
29
+ "type": "IMAGE",
30
+ "links": [
31
+ 52,
32
+ 54
33
+ ],
34
+ "shape": 3,
35
+ "slot_index": 0
36
+ },
37
+ {
38
+ "name": "width",
39
+ "type": "INT",
40
+ "links": null,
41
+ "shape": 3
42
+ },
43
+ {
44
+ "name": "height",
45
+ "type": "INT",
46
+ "links": null,
47
+ "shape": 3
48
+ }
49
+ ],
50
+ "properties": {
51
+ "Node name for S&R": "ImageResize+"
52
+ },
53
+ "widgets_values": [
54
+ 512,
55
+ 512,
56
+ "nearest",
57
+ false
58
+ ]
59
+ },
60
+ {
61
+ "id": 6,
62
+ "type": "CLIPTextEncode",
63
+ "pos": [
64
+ 415,
65
+ 186
66
+ ],
67
+ "size": {
68
+ "0": 422.84503173828125,
69
+ "1": 164.31304931640625
70
+ },
71
+ "flags": {},
72
+ "order": 3,
73
+ "mode": 0,
74
+ "inputs": [
75
+ {
76
+ "name": "clip",
77
+ "type": "CLIP",
78
+ "link": 3
79
+ }
80
+ ],
81
+ "outputs": [
82
+ {
83
+ "name": "CONDITIONING",
84
+ "type": "CONDITIONING",
85
+ "links": [
86
+ 64
87
+ ],
88
+ "slot_index": 0
89
+ }
90
+ ],
91
+ "properties": {
92
+ "Node name for S&R": "CLIPTextEncode"
93
+ },
94
+ "widgets_values": [
95
+ "old man sitting, high quality\n\n"
96
+ ]
97
+ },
98
+ {
99
+ "id": 7,
100
+ "type": "CLIPTextEncode",
101
+ "pos": [
102
+ 413,
103
+ 389
104
+ ],
105
+ "size": {
106
+ "0": 425.27801513671875,
107
+ "1": 180.6060791015625
108
+ },
109
+ "flags": {},
110
+ "order": 4,
111
+ "mode": 0,
112
+ "inputs": [
113
+ {
114
+ "name": "clip",
115
+ "type": "CLIP",
116
+ "link": 5
117
+ }
118
+ ],
119
+ "outputs": [
120
+ {
121
+ "name": "CONDITIONING",
122
+ "type": "CONDITIONING",
123
+ "links": [
124
+ 65
125
+ ],
126
+ "slot_index": 0
127
+ }
128
+ ],
129
+ "properties": {
130
+ "Node name for S&R": "CLIPTextEncode"
131
+ },
132
+ "widgets_values": [
133
+ "text, watermark"
134
+ ]
135
+ },
136
+ {
137
+ "id": 3,
138
+ "type": "KSampler",
139
+ "pos": [
140
+ 915,
141
+ 176
142
+ ],
143
+ "size": {
144
+ "0": 315,
145
+ "1": 262
146
+ },
147
+ "flags": {},
148
+ "order": 8,
149
+ "mode": 0,
150
+ "inputs": [
151
+ {
152
+ "name": "model",
153
+ "type": "MODEL",
154
+ "link": 56
155
+ },
156
+ {
157
+ "name": "positive",
158
+ "type": "CONDITIONING",
159
+ "link": 64
160
+ },
161
+ {
162
+ "name": "negative",
163
+ "type": "CONDITIONING",
164
+ "link": 65
165
+ },
166
+ {
167
+ "name": "latent_image",
168
+ "type": "LATENT",
169
+ "link": 2
170
+ }
171
+ ],
172
+ "outputs": [
173
+ {
174
+ "name": "LATENT",
175
+ "type": "LATENT",
176
+ "links": [
177
+ 70,
178
+ 84
179
+ ],
180
+ "slot_index": 0
181
+ }
182
+ ],
183
+ "properties": {
184
+ "Node name for S&R": "KSampler"
185
+ },
186
+ "widgets_values": [
187
+ 674865838825506,
188
+ "randomize",
189
+ 20,
190
+ 8,
191
+ "euler",
192
+ "normal",
193
+ 1
194
+ ]
195
+ },
196
+ {
197
+ "id": 50,
198
+ "type": "PreviewImage",
199
+ "pos": [
200
+ 2040,
201
+ -120
202
+ ],
203
+ "size": {
204
+ "0": 210,
205
+ "1": 246
206
+ },
207
+ "flags": {},
208
+ "order": 12,
209
+ "mode": 0,
210
+ "inputs": [
211
+ {
212
+ "name": "images",
213
+ "type": "IMAGE",
214
+ "link": 85
215
+ }
216
+ ],
217
+ "properties": {
218
+ "Node name for S&R": "PreviewImage"
219
+ }
220
+ },
221
+ {
222
+ "id": 5,
223
+ "type": "EmptyLatentImage",
224
+ "pos": [
225
+ 475,
226
+ 666
227
+ ],
228
+ "size": {
229
+ "0": 315,
230
+ "1": 106
231
+ },
232
+ "flags": {},
233
+ "order": 0,
234
+ "mode": 0,
235
+ "outputs": [
236
+ {
237
+ "name": "LATENT",
238
+ "type": "LATENT",
239
+ "links": [
240
+ 2
241
+ ],
242
+ "slot_index": 0
243
+ }
244
+ ],
245
+ "properties": {
246
+ "Node name for S&R": "EmptyLatentImage"
247
+ },
248
+ "widgets_values": [
249
+ 512,
250
+ 512,
251
+ 4
252
+ ]
253
+ },
254
+ {
255
+ "id": 44,
256
+ "type": "VAEDecode",
257
+ "pos": [
258
+ 1260,
259
+ 180
260
+ ],
261
+ "size": {
262
+ "0": 210,
263
+ "1": 46
264
+ },
265
+ "flags": {},
266
+ "order": 9,
267
+ "mode": 0,
268
+ "inputs": [
269
+ {
270
+ "name": "samples",
271
+ "type": "LATENT",
272
+ "link": 70
273
+ },
274
+ {
275
+ "name": "vae",
276
+ "type": "VAE",
277
+ "link": 88,
278
+ "slot_index": 1
279
+ }
280
+ ],
281
+ "outputs": [
282
+ {
283
+ "name": "IMAGE",
284
+ "type": "IMAGE",
285
+ "links": [
286
+ 75,
287
+ 83
288
+ ],
289
+ "shape": 3,
290
+ "slot_index": 0
291
+ }
292
+ ],
293
+ "properties": {
294
+ "Node name for S&R": "VAEDecode"
295
+ }
296
+ },
297
+ {
298
+ "id": 4,
299
+ "type": "CheckpointLoaderSimple",
300
+ "pos": [
301
+ 5,
302
+ 479
303
+ ],
304
+ "size": {
305
+ "0": 315,
306
+ "1": 98
307
+ },
308
+ "flags": {},
309
+ "order": 1,
310
+ "mode": 0,
311
+ "outputs": [
312
+ {
313
+ "name": "MODEL",
314
+ "type": "MODEL",
315
+ "links": [
316
+ 55
317
+ ],
318
+ "slot_index": 0
319
+ },
320
+ {
321
+ "name": "CLIP",
322
+ "type": "CLIP",
323
+ "links": [
324
+ 3,
325
+ 5
326
+ ],
327
+ "slot_index": 1
328
+ },
329
+ {
330
+ "name": "VAE",
331
+ "type": "VAE",
332
+ "links": [
333
+ 88
334
+ ],
335
+ "slot_index": 2
336
+ }
337
+ ],
338
+ "properties": {
339
+ "Node name for S&R": "CheckpointLoaderSimple"
340
+ },
341
+ "widgets_values": [
342
+ "realisticVisionV20_v20.safetensors"
343
+ ]
344
+ },
345
+ {
346
+ "id": 46,
347
+ "type": "PreviewImage",
348
+ "pos": [
349
+ 1460,
350
+ 410
351
+ ],
352
+ "size": [
353
+ 406.59525756835933,
354
+ 340.5699157714844
355
+ ],
356
+ "flags": {},
357
+ "order": 10,
358
+ "mode": 0,
359
+ "inputs": [
360
+ {
361
+ "name": "images",
362
+ "type": "IMAGE",
363
+ "link": 75
364
+ }
365
+ ],
366
+ "properties": {
367
+ "Node name for S&R": "PreviewImage"
368
+ }
369
+ },
370
+ {
371
+ "id": 34,
372
+ "type": "PreviewImage",
373
+ "pos": [
374
+ 471,
375
+ -337
376
+ ],
377
+ "size": {
378
+ "0": 210,
379
+ "1": 246
380
+ },
381
+ "flags": {},
382
+ "order": 6,
383
+ "mode": 0,
384
+ "inputs": [
385
+ {
386
+ "name": "images",
387
+ "type": "IMAGE",
388
+ "link": 52
389
+ }
390
+ ],
391
+ "properties": {
392
+ "Node name for S&R": "PreviewImage"
393
+ }
394
+ },
395
+ {
396
+ "id": 37,
397
+ "type": "LayeredDiffusionCondJointApply",
398
+ "pos": [
399
+ 429,
400
+ -13
401
+ ],
402
+ "size": {
403
+ "0": 388,
404
+ "1": 138
405
+ },
406
+ "flags": {},
407
+ "order": 7,
408
+ "mode": 0,
409
+ "inputs": [
410
+ {
411
+ "name": "model",
412
+ "type": "MODEL",
413
+ "link": 55,
414
+ "slot_index": 0
415
+ },
416
+ {
417
+ "name": "image",
418
+ "type": "IMAGE",
419
+ "link": 54,
420
+ "slot_index": 1
421
+ },
422
+ {
423
+ "name": "cond",
424
+ "type": "CONDITIONING",
425
+ "link": null
426
+ },
427
+ {
428
+ "name": "blended_cond",
429
+ "type": "CONDITIONING",
430
+ "link": null
431
+ }
432
+ ],
433
+ "outputs": [
434
+ {
435
+ "name": "MODEL",
436
+ "type": "MODEL",
437
+ "links": [
438
+ 56
439
+ ],
440
+ "shape": 3,
441
+ "slot_index": 0
442
+ }
443
+ ],
444
+ "properties": {
445
+ "Node name for S&R": "LayeredDiffusionCondJointApply"
446
+ },
447
+ "widgets_values": [
448
+ "SD15, Background, attn_sharing, Batch size (2N)"
449
+ ],
450
+ "color": "#232",
451
+ "bgcolor": "#353"
452
+ },
453
+ {
454
+ "id": 52,
455
+ "type": "LayeredDiffusionDecodeSplit",
456
+ "pos": [
457
+ 1544,
458
+ 177
459
+ ],
460
+ "size": {
461
+ "0": 315,
462
+ "1": 146
463
+ },
464
+ "flags": {},
465
+ "order": 11,
466
+ "mode": 0,
467
+ "inputs": [
468
+ {
469
+ "name": "samples",
470
+ "type": "LATENT",
471
+ "link": 84
472
+ },
473
+ {
474
+ "name": "images",
475
+ "type": "IMAGE",
476
+ "link": 83
477
+ }
478
+ ],
479
+ "outputs": [
480
+ {
481
+ "name": "IMAGE",
482
+ "type": "IMAGE",
483
+ "links": [
484
+ 85
485
+ ],
486
+ "shape": 3,
487
+ "slot_index": 0
488
+ },
489
+ {
490
+ "name": "IMAGE",
491
+ "type": "IMAGE",
492
+ "links": [
493
+ 86
494
+ ],
495
+ "shape": 3,
496
+ "slot_index": 1
497
+ },
498
+ {
499
+ "name": "IMAGE",
500
+ "type": "IMAGE",
501
+ "links": null,
502
+ "shape": 3
503
+ }
504
+ ],
505
+ "properties": {
506
+ "Node name for S&R": "LayeredDiffusionDecodeSplit"
507
+ },
508
+ "widgets_values": [
509
+ 2,
510
+ "SDXL",
511
+ 16
512
+ ],
513
+ "color": "#232",
514
+ "bgcolor": "#353"
515
+ },
516
+ {
517
+ "id": 51,
518
+ "type": "PreviewImage",
519
+ "pos": [
520
+ 2040,
521
+ 201
522
+ ],
523
+ "size": {
524
+ "0": 210,
525
+ "1": 246
526
+ },
527
+ "flags": {},
528
+ "order": 13,
529
+ "mode": 0,
530
+ "inputs": [
531
+ {
532
+ "name": "images",
533
+ "type": "IMAGE",
534
+ "link": 86
535
+ }
536
+ ],
537
+ "properties": {
538
+ "Node name for S&R": "PreviewImage"
539
+ }
540
+ },
541
+ {
542
+ "id": 30,
543
+ "type": "LoadImage",
544
+ "pos": [
545
+ -313,
546
+ -10
547
+ ],
548
+ "size": {
549
+ "0": 315,
550
+ "1": 314
551
+ },
552
+ "flags": {},
553
+ "order": 2,
554
+ "mode": 0,
555
+ "outputs": [
556
+ {
557
+ "name": "IMAGE",
558
+ "type": "IMAGE",
559
+ "links": [
560
+ 50
561
+ ],
562
+ "shape": 3,
563
+ "slot_index": 0
564
+ },
565
+ {
566
+ "name": "MASK",
567
+ "type": "MASK",
568
+ "links": null,
569
+ "shape": 3
570
+ }
571
+ ],
572
+ "properties": {
573
+ "Node name for S&R": "LoadImage"
574
+ },
575
+ "widgets_values": [
576
+ "309219693-e7e2d80e-ffbe-4724-812a-5139a88027e3.png",
577
+ "image"
578
+ ]
579
+ }
580
+ ],
581
+ "links": [
582
+ [
583
+ 2,
584
+ 5,
585
+ 0,
586
+ 3,
587
+ 3,
588
+ "LATENT"
589
+ ],
590
+ [
591
+ 3,
592
+ 4,
593
+ 1,
594
+ 6,
595
+ 0,
596
+ "CLIP"
597
+ ],
598
+ [
599
+ 5,
600
+ 4,
601
+ 1,
602
+ 7,
603
+ 0,
604
+ "CLIP"
605
+ ],
606
+ [
607
+ 50,
608
+ 30,
609
+ 0,
610
+ 33,
611
+ 0,
612
+ "IMAGE"
613
+ ],
614
+ [
615
+ 52,
616
+ 33,
617
+ 0,
618
+ 34,
619
+ 0,
620
+ "IMAGE"
621
+ ],
622
+ [
623
+ 54,
624
+ 33,
625
+ 0,
626
+ 37,
627
+ 1,
628
+ "IMAGE"
629
+ ],
630
+ [
631
+ 55,
632
+ 4,
633
+ 0,
634
+ 37,
635
+ 0,
636
+ "MODEL"
637
+ ],
638
+ [
639
+ 56,
640
+ 37,
641
+ 0,
642
+ 3,
643
+ 0,
644
+ "MODEL"
645
+ ],
646
+ [
647
+ 64,
648
+ 6,
649
+ 0,
650
+ 3,
651
+ 1,
652
+ "CONDITIONING"
653
+ ],
654
+ [
655
+ 65,
656
+ 7,
657
+ 0,
658
+ 3,
659
+ 2,
660
+ "CONDITIONING"
661
+ ],
662
+ [
663
+ 70,
664
+ 3,
665
+ 0,
666
+ 44,
667
+ 0,
668
+ "LATENT"
669
+ ],
670
+ [
671
+ 75,
672
+ 44,
673
+ 0,
674
+ 46,
675
+ 0,
676
+ "IMAGE"
677
+ ],
678
+ [
679
+ 83,
680
+ 44,
681
+ 0,
682
+ 52,
683
+ 1,
684
+ "IMAGE"
685
+ ],
686
+ [
687
+ 84,
688
+ 3,
689
+ 0,
690
+ 52,
691
+ 0,
692
+ "LATENT"
693
+ ],
694
+ [
695
+ 85,
696
+ 52,
697
+ 0,
698
+ 50,
699
+ 0,
700
+ "IMAGE"
701
+ ],
702
+ [
703
+ 86,
704
+ 52,
705
+ 1,
706
+ 51,
707
+ 0,
708
+ "IMAGE"
709
+ ],
710
+ [
711
+ 88,
712
+ 4,
713
+ 2,
714
+ 44,
715
+ 1,
716
+ "VAE"
717
+ ]
718
+ ],
719
+ "groups": [],
720
+ "config": {},
721
+ "extra": {},
722
+ "version": 0.4
723
+ }
ComfyUI/custom_nodes/layerdiffuse/examples/layer_diffusion_cond_joint_fg.json ADDED
@@ -0,0 +1,480 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "last_node_id": 53,
3
+ "last_link_id": 90,
4
+ "nodes": [
5
+ {
6
+ "id": 7,
7
+ "type": "CLIPTextEncode",
8
+ "pos": [
9
+ 413,
10
+ 389
11
+ ],
12
+ "size": {
13
+ "0": 425.27801513671875,
14
+ "1": 180.6060791015625
15
+ },
16
+ "flags": {},
17
+ "order": 4,
18
+ "mode": 0,
19
+ "inputs": [
20
+ {
21
+ "name": "clip",
22
+ "type": "CLIP",
23
+ "link": 5
24
+ }
25
+ ],
26
+ "outputs": [
27
+ {
28
+ "name": "CONDITIONING",
29
+ "type": "CONDITIONING",
30
+ "links": [
31
+ 65
32
+ ],
33
+ "slot_index": 0
34
+ }
35
+ ],
36
+ "properties": {
37
+ "Node name for S&R": "CLIPTextEncode"
38
+ },
39
+ "widgets_values": [
40
+ "text, watermark"
41
+ ]
42
+ },
43
+ {
44
+ "id": 4,
45
+ "type": "CheckpointLoaderSimple",
46
+ "pos": [
47
+ 5,
48
+ 479
49
+ ],
50
+ "size": {
51
+ "0": 315,
52
+ "1": 98
53
+ },
54
+ "flags": {},
55
+ "order": 0,
56
+ "mode": 0,
57
+ "outputs": [
58
+ {
59
+ "name": "MODEL",
60
+ "type": "MODEL",
61
+ "links": [
62
+ 55
63
+ ],
64
+ "slot_index": 0
65
+ },
66
+ {
67
+ "name": "CLIP",
68
+ "type": "CLIP",
69
+ "links": [
70
+ 3,
71
+ 5
72
+ ],
73
+ "slot_index": 1
74
+ },
75
+ {
76
+ "name": "VAE",
77
+ "type": "VAE",
78
+ "links": [
79
+ 88
80
+ ],
81
+ "slot_index": 2
82
+ }
83
+ ],
84
+ "properties": {
85
+ "Node name for S&R": "CheckpointLoaderSimple"
86
+ },
87
+ "widgets_values": [
88
+ "realisticVisionV20_v20.safetensors"
89
+ ]
90
+ },
91
+ {
92
+ "id": 46,
93
+ "type": "PreviewImage",
94
+ "pos": [
95
+ 1525,
96
+ 183
97
+ ],
98
+ "size": [
99
+ 406.59525756835933,
100
+ 340.5699157714844
101
+ ],
102
+ "flags": {},
103
+ "order": 8,
104
+ "mode": 0,
105
+ "inputs": [
106
+ {
107
+ "name": "images",
108
+ "type": "IMAGE",
109
+ "link": 75
110
+ }
111
+ ],
112
+ "properties": {
113
+ "Node name for S&R": "PreviewImage"
114
+ }
115
+ },
116
+ {
117
+ "id": 37,
118
+ "type": "LayeredDiffusionCondJointApply",
119
+ "pos": [
120
+ 436,
121
+ -13
122
+ ],
123
+ "size": {
124
+ "0": 388,
125
+ "1": 138
126
+ },
127
+ "flags": {},
128
+ "order": 5,
129
+ "mode": 0,
130
+ "inputs": [
131
+ {
132
+ "name": "model",
133
+ "type": "MODEL",
134
+ "link": 55,
135
+ "slot_index": 0
136
+ },
137
+ {
138
+ "name": "image",
139
+ "type": "IMAGE",
140
+ "link": 90,
141
+ "slot_index": 1
142
+ },
143
+ {
144
+ "name": "cond",
145
+ "type": "CONDITIONING",
146
+ "link": null
147
+ },
148
+ {
149
+ "name": "blended_cond",
150
+ "type": "CONDITIONING",
151
+ "link": null
152
+ }
153
+ ],
154
+ "outputs": [
155
+ {
156
+ "name": "MODEL",
157
+ "type": "MODEL",
158
+ "links": [
159
+ 56
160
+ ],
161
+ "shape": 3,
162
+ "slot_index": 0
163
+ }
164
+ ],
165
+ "properties": {
166
+ "Node name for S&R": "LayeredDiffusionCondJointApply"
167
+ },
168
+ "widgets_values": [
169
+ "SD15, Foreground, attn_sharing, Batch size (2N)"
170
+ ],
171
+ "color": "#232",
172
+ "bgcolor": "#353"
173
+ },
174
+ {
175
+ "id": 5,
176
+ "type": "EmptyLatentImage",
177
+ "pos": [
178
+ 465,
179
+ 671
180
+ ],
181
+ "size": {
182
+ "0": 315,
183
+ "1": 106
184
+ },
185
+ "flags": {},
186
+ "order": 1,
187
+ "mode": 0,
188
+ "outputs": [
189
+ {
190
+ "name": "LATENT",
191
+ "type": "LATENT",
192
+ "links": [
193
+ 2
194
+ ],
195
+ "slot_index": 0
196
+ }
197
+ ],
198
+ "properties": {
199
+ "Node name for S&R": "EmptyLatentImage"
200
+ },
201
+ "widgets_values": [
202
+ 512,
203
+ 512,
204
+ 4
205
+ ]
206
+ },
207
+ {
208
+ "id": 6,
209
+ "type": "CLIPTextEncode",
210
+ "pos": [
211
+ 415,
212
+ 186
213
+ ],
214
+ "size": {
215
+ "0": 422.84503173828125,
216
+ "1": 164.31304931640625
217
+ },
218
+ "flags": {},
219
+ "order": 3,
220
+ "mode": 0,
221
+ "inputs": [
222
+ {
223
+ "name": "clip",
224
+ "type": "CLIP",
225
+ "link": 3
226
+ }
227
+ ],
228
+ "outputs": [
229
+ {
230
+ "name": "CONDITIONING",
231
+ "type": "CONDITIONING",
232
+ "links": [
233
+ 64
234
+ ],
235
+ "slot_index": 0
236
+ }
237
+ ],
238
+ "properties": {
239
+ "Node name for S&R": "CLIPTextEncode"
240
+ },
241
+ "widgets_values": [
242
+ "\n"
243
+ ]
244
+ },
245
+ {
246
+ "id": 3,
247
+ "type": "KSampler",
248
+ "pos": [
249
+ 903,
250
+ 180
251
+ ],
252
+ "size": {
253
+ "0": 315,
254
+ "1": 262
255
+ },
256
+ "flags": {},
257
+ "order": 6,
258
+ "mode": 0,
259
+ "inputs": [
260
+ {
261
+ "name": "model",
262
+ "type": "MODEL",
263
+ "link": 56
264
+ },
265
+ {
266
+ "name": "positive",
267
+ "type": "CONDITIONING",
268
+ "link": 64
269
+ },
270
+ {
271
+ "name": "negative",
272
+ "type": "CONDITIONING",
273
+ "link": 65
274
+ },
275
+ {
276
+ "name": "latent_image",
277
+ "type": "LATENT",
278
+ "link": 2
279
+ }
280
+ ],
281
+ "outputs": [
282
+ {
283
+ "name": "LATENT",
284
+ "type": "LATENT",
285
+ "links": [
286
+ 70
287
+ ],
288
+ "slot_index": 0
289
+ }
290
+ ],
291
+ "properties": {
292
+ "Node name for S&R": "KSampler"
293
+ },
294
+ "widgets_values": [
295
+ 748570836161213,
296
+ "randomize",
297
+ 20,
298
+ 8,
299
+ "euler",
300
+ "normal",
301
+ 1
302
+ ]
303
+ },
304
+ {
305
+ "id": 44,
306
+ "type": "VAEDecode",
307
+ "pos": [
308
+ 1258,
309
+ 184
310
+ ],
311
+ "size": {
312
+ "0": 210,
313
+ "1": 46
314
+ },
315
+ "flags": {},
316
+ "order": 7,
317
+ "mode": 0,
318
+ "inputs": [
319
+ {
320
+ "name": "samples",
321
+ "type": "LATENT",
322
+ "link": 70
323
+ },
324
+ {
325
+ "name": "vae",
326
+ "type": "VAE",
327
+ "link": 88,
328
+ "slot_index": 1
329
+ }
330
+ ],
331
+ "outputs": [
332
+ {
333
+ "name": "IMAGE",
334
+ "type": "IMAGE",
335
+ "links": [
336
+ 75
337
+ ],
338
+ "shape": 3,
339
+ "slot_index": 0
340
+ }
341
+ ],
342
+ "properties": {
343
+ "Node name for S&R": "VAEDecode"
344
+ }
345
+ },
346
+ {
347
+ "id": 30,
348
+ "type": "LoadImage",
349
+ "pos": [
350
+ 6,
351
+ 5
352
+ ],
353
+ "size": {
354
+ "0": 315,
355
+ "1": 314
356
+ },
357
+ "flags": {},
358
+ "order": 2,
359
+ "mode": 0,
360
+ "outputs": [
361
+ {
362
+ "name": "IMAGE",
363
+ "type": "IMAGE",
364
+ "links": [
365
+ 90
366
+ ],
367
+ "shape": 3,
368
+ "slot_index": 0
369
+ },
370
+ {
371
+ "name": "MASK",
372
+ "type": "MASK",
373
+ "links": null,
374
+ "shape": 3
375
+ }
376
+ ],
377
+ "properties": {
378
+ "Node name for S&R": "LoadImage"
379
+ },
380
+ "widgets_values": [
381
+ "dog (2).png",
382
+ "image"
383
+ ]
384
+ }
385
+ ],
386
+ "links": [
387
+ [
388
+ 2,
389
+ 5,
390
+ 0,
391
+ 3,
392
+ 3,
393
+ "LATENT"
394
+ ],
395
+ [
396
+ 3,
397
+ 4,
398
+ 1,
399
+ 6,
400
+ 0,
401
+ "CLIP"
402
+ ],
403
+ [
404
+ 5,
405
+ 4,
406
+ 1,
407
+ 7,
408
+ 0,
409
+ "CLIP"
410
+ ],
411
+ [
412
+ 55,
413
+ 4,
414
+ 0,
415
+ 37,
416
+ 0,
417
+ "MODEL"
418
+ ],
419
+ [
420
+ 56,
421
+ 37,
422
+ 0,
423
+ 3,
424
+ 0,
425
+ "MODEL"
426
+ ],
427
+ [
428
+ 64,
429
+ 6,
430
+ 0,
431
+ 3,
432
+ 1,
433
+ "CONDITIONING"
434
+ ],
435
+ [
436
+ 65,
437
+ 7,
438
+ 0,
439
+ 3,
440
+ 2,
441
+ "CONDITIONING"
442
+ ],
443
+ [
444
+ 70,
445
+ 3,
446
+ 0,
447
+ 44,
448
+ 0,
449
+ "LATENT"
450
+ ],
451
+ [
452
+ 75,
453
+ 44,
454
+ 0,
455
+ 46,
456
+ 0,
457
+ "IMAGE"
458
+ ],
459
+ [
460
+ 88,
461
+ 4,
462
+ 2,
463
+ 44,
464
+ 1,
465
+ "VAE"
466
+ ],
467
+ [
468
+ 90,
469
+ 30,
470
+ 0,
471
+ 37,
472
+ 1,
473
+ "IMAGE"
474
+ ]
475
+ ],
476
+ "groups": [],
477
+ "config": {},
478
+ "extra": {},
479
+ "version": 0.4
480
+ }
ComfyUI/custom_nodes/layerdiffuse/examples/layer_diffusion_diff_bg.json ADDED
@@ -0,0 +1,750 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "last_node_id": 40,
3
+ "last_link_id": 67,
4
+ "nodes": [
5
+ {
6
+ "id": 4,
7
+ "type": "CheckpointLoaderSimple",
8
+ "pos": [
9
+ 5,
10
+ 479
11
+ ],
12
+ "size": {
13
+ "0": 315,
14
+ "1": 98
15
+ },
16
+ "flags": {},
17
+ "order": 0,
18
+ "mode": 0,
19
+ "outputs": [
20
+ {
21
+ "name": "MODEL",
22
+ "type": "MODEL",
23
+ "links": [
24
+ 55
25
+ ],
26
+ "slot_index": 0
27
+ },
28
+ {
29
+ "name": "CLIP",
30
+ "type": "CLIP",
31
+ "links": [
32
+ 3,
33
+ 5
34
+ ],
35
+ "slot_index": 1
36
+ },
37
+ {
38
+ "name": "VAE",
39
+ "type": "VAE",
40
+ "links": [
41
+ 22,
42
+ 49,
43
+ 58
44
+ ],
45
+ "slot_index": 2
46
+ }
47
+ ],
48
+ "properties": {
49
+ "Node name for S&R": "CheckpointLoaderSimple"
50
+ },
51
+ "widgets_values": [
52
+ "juggernautXL_v8Rundiffusion.safetensors"
53
+ ]
54
+ },
55
+ {
56
+ "id": 7,
57
+ "type": "CLIPTextEncode",
58
+ "pos": [
59
+ 413,
60
+ 389
61
+ ],
62
+ "size": {
63
+ "0": 425.27801513671875,
64
+ "1": 180.6060791015625
65
+ },
66
+ "flags": {},
67
+ "order": 5,
68
+ "mode": 0,
69
+ "inputs": [
70
+ {
71
+ "name": "clip",
72
+ "type": "CLIP",
73
+ "link": 5
74
+ }
75
+ ],
76
+ "outputs": [
77
+ {
78
+ "name": "CONDITIONING",
79
+ "type": "CONDITIONING",
80
+ "links": [
81
+ 57
82
+ ],
83
+ "slot_index": 0
84
+ }
85
+ ],
86
+ "properties": {
87
+ "Node name for S&R": "CLIPTextEncode"
88
+ },
89
+ "widgets_values": [
90
+ "text, watermark"
91
+ ]
92
+ },
93
+ {
94
+ "id": 5,
95
+ "type": "EmptyLatentImage",
96
+ "pos": [
97
+ 475,
98
+ 666
99
+ ],
100
+ "size": {
101
+ "0": 315,
102
+ "1": 106
103
+ },
104
+ "flags": {},
105
+ "order": 1,
106
+ "mode": 0,
107
+ "outputs": [
108
+ {
109
+ "name": "LATENT",
110
+ "type": "LATENT",
111
+ "links": [
112
+ 2
113
+ ],
114
+ "slot_index": 0
115
+ }
116
+ ],
117
+ "properties": {
118
+ "Node name for S&R": "EmptyLatentImage"
119
+ },
120
+ "widgets_values": [
121
+ 1024,
122
+ 1024,
123
+ 1
124
+ ]
125
+ },
126
+ {
127
+ "id": 39,
128
+ "type": "VAEEncode",
129
+ "pos": [
130
+ 201,
131
+ -391
132
+ ],
133
+ "size": {
134
+ "0": 210,
135
+ "1": 46
136
+ },
137
+ "flags": {},
138
+ "order": 6,
139
+ "mode": 0,
140
+ "inputs": [
141
+ {
142
+ "name": "pixels",
143
+ "type": "IMAGE",
144
+ "link": 59,
145
+ "slot_index": 0
146
+ },
147
+ {
148
+ "name": "vae",
149
+ "type": "VAE",
150
+ "link": 58,
151
+ "slot_index": 1
152
+ }
153
+ ],
154
+ "outputs": [
155
+ {
156
+ "name": "LATENT",
157
+ "type": "LATENT",
158
+ "links": [
159
+ 60
160
+ ],
161
+ "shape": 3,
162
+ "slot_index": 0
163
+ }
164
+ ],
165
+ "properties": {
166
+ "Node name for S&R": "VAEEncode"
167
+ }
168
+ },
169
+ {
170
+ "id": 29,
171
+ "type": "VAEEncode",
172
+ "pos": [
173
+ 210,
174
+ -20
175
+ ],
176
+ "size": {
177
+ "0": 210,
178
+ "1": 46
179
+ },
180
+ "flags": {},
181
+ "order": 7,
182
+ "mode": 0,
183
+ "inputs": [
184
+ {
185
+ "name": "pixels",
186
+ "type": "IMAGE",
187
+ "link": 53
188
+ },
189
+ {
190
+ "name": "vae",
191
+ "type": "VAE",
192
+ "link": 49,
193
+ "slot_index": 1
194
+ }
195
+ ],
196
+ "outputs": [
197
+ {
198
+ "name": "LATENT",
199
+ "type": "LATENT",
200
+ "links": [
201
+ 61
202
+ ],
203
+ "shape": 3,
204
+ "slot_index": 0
205
+ }
206
+ ],
207
+ "properties": {
208
+ "Node name for S&R": "VAEEncode"
209
+ }
210
+ },
211
+ {
212
+ "id": 38,
213
+ "type": "LoadImage",
214
+ "pos": [
215
+ -137,
216
+ -388
217
+ ],
218
+ "size": {
219
+ "0": 288.47406005859375,
220
+ "1": 317.46051025390625
221
+ },
222
+ "flags": {},
223
+ "order": 2,
224
+ "mode": 0,
225
+ "outputs": [
226
+ {
227
+ "name": "IMAGE",
228
+ "type": "IMAGE",
229
+ "links": [
230
+ 59
231
+ ],
232
+ "shape": 3
233
+ },
234
+ {
235
+ "name": "MASK",
236
+ "type": "MASK",
237
+ "links": null,
238
+ "shape": 3
239
+ }
240
+ ],
241
+ "properties": {
242
+ "Node name for S&R": "LoadImage"
243
+ },
244
+ "widgets_values": [
245
+ "old_man.png",
246
+ "image"
247
+ ]
248
+ },
249
+ {
250
+ "id": 30,
251
+ "type": "LoadImage",
252
+ "pos": [
253
+ -146,
254
+ -22
255
+ ],
256
+ "size": {
257
+ "0": 315,
258
+ "1": 314
259
+ },
260
+ "flags": {},
261
+ "order": 3,
262
+ "mode": 0,
263
+ "outputs": [
264
+ {
265
+ "name": "IMAGE",
266
+ "type": "IMAGE",
267
+ "links": [
268
+ 53
269
+ ],
270
+ "shape": 3,
271
+ "slot_index": 0
272
+ },
273
+ {
274
+ "name": "MASK",
275
+ "type": "MASK",
276
+ "links": null,
277
+ "shape": 3
278
+ }
279
+ ],
280
+ "properties": {
281
+ "Node name for S&R": "LoadImage"
282
+ },
283
+ "widgets_values": [
284
+ "chair.png",
285
+ "image"
286
+ ]
287
+ },
288
+ {
289
+ "id": 6,
290
+ "type": "CLIPTextEncode",
291
+ "pos": [
292
+ 415,
293
+ 186
294
+ ],
295
+ "size": {
296
+ "0": 422.84503173828125,
297
+ "1": 164.31304931640625
298
+ },
299
+ "flags": {},
300
+ "order": 4,
301
+ "mode": 0,
302
+ "inputs": [
303
+ {
304
+ "name": "clip",
305
+ "type": "CLIP",
306
+ "link": 3
307
+ }
308
+ ],
309
+ "outputs": [
310
+ {
311
+ "name": "CONDITIONING",
312
+ "type": "CONDITIONING",
313
+ "links": [
314
+ 56
315
+ ],
316
+ "slot_index": 0
317
+ }
318
+ ],
319
+ "properties": {
320
+ "Node name for S&R": "CLIPTextEncode"
321
+ },
322
+ "widgets_values": [
323
+ "an old man sitting, high quality\n\n"
324
+ ]
325
+ },
326
+ {
327
+ "id": 14,
328
+ "type": "VAEDecode",
329
+ "pos": [
330
+ 1286,
331
+ 187
332
+ ],
333
+ "size": {
334
+ "0": 210,
335
+ "1": 46
336
+ },
337
+ "flags": {},
338
+ "order": 10,
339
+ "mode": 0,
340
+ "inputs": [
341
+ {
342
+ "name": "samples",
343
+ "type": "LATENT",
344
+ "link": 21
345
+ },
346
+ {
347
+ "name": "vae",
348
+ "type": "VAE",
349
+ "link": 22,
350
+ "slot_index": 1
351
+ }
352
+ ],
353
+ "outputs": [
354
+ {
355
+ "name": "IMAGE",
356
+ "type": "IMAGE",
357
+ "links": [
358
+ 65
359
+ ],
360
+ "shape": 3,
361
+ "slot_index": 0
362
+ }
363
+ ],
364
+ "properties": {
365
+ "Node name for S&R": "VAEDecode"
366
+ }
367
+ },
368
+ {
369
+ "id": 3,
370
+ "type": "KSampler",
371
+ "pos": [
372
+ 913,
373
+ 182
374
+ ],
375
+ "size": {
376
+ "0": 315,
377
+ "1": 262
378
+ },
379
+ "flags": {},
380
+ "order": 9,
381
+ "mode": 0,
382
+ "inputs": [
383
+ {
384
+ "name": "model",
385
+ "type": "MODEL",
386
+ "link": 62
387
+ },
388
+ {
389
+ "name": "positive",
390
+ "type": "CONDITIONING",
391
+ "link": 63
392
+ },
393
+ {
394
+ "name": "negative",
395
+ "type": "CONDITIONING",
396
+ "link": 64
397
+ },
398
+ {
399
+ "name": "latent_image",
400
+ "type": "LATENT",
401
+ "link": 2
402
+ }
403
+ ],
404
+ "outputs": [
405
+ {
406
+ "name": "LATENT",
407
+ "type": "LATENT",
408
+ "links": [
409
+ 21,
410
+ 67
411
+ ],
412
+ "slot_index": 0
413
+ }
414
+ ],
415
+ "properties": {
416
+ "Node name for S&R": "KSampler"
417
+ },
418
+ "widgets_values": [
419
+ 462370085958750,
420
+ "fixed",
421
+ 20,
422
+ 8,
423
+ "euler",
424
+ "normal",
425
+ 1
426
+ ]
427
+ },
428
+ {
429
+ "id": 20,
430
+ "type": "PreviewImage",
431
+ "pos": [
432
+ 1800,
433
+ 190
434
+ ],
435
+ "size": {
436
+ "0": 611.2340087890625,
437
+ "1": 633.9354858398438
438
+ },
439
+ "flags": {},
440
+ "order": 12,
441
+ "mode": 0,
442
+ "inputs": [
443
+ {
444
+ "name": "images",
445
+ "type": "IMAGE",
446
+ "link": 66
447
+ }
448
+ ],
449
+ "properties": {
450
+ "Node name for S&R": "PreviewImage"
451
+ }
452
+ },
453
+ {
454
+ "id": 37,
455
+ "type": "LayeredDiffusionDiffApply",
456
+ "pos": [
457
+ 457,
458
+ -37
459
+ ],
460
+ "size": {
461
+ "0": 342.5999755859375,
462
+ "1": 162
463
+ },
464
+ "flags": {},
465
+ "order": 8,
466
+ "mode": 0,
467
+ "inputs": [
468
+ {
469
+ "name": "model",
470
+ "type": "MODEL",
471
+ "link": 55,
472
+ "slot_index": 0
473
+ },
474
+ {
475
+ "name": "cond",
476
+ "type": "CONDITIONING",
477
+ "link": 56,
478
+ "slot_index": 1
479
+ },
480
+ {
481
+ "name": "uncond",
482
+ "type": "CONDITIONING",
483
+ "link": 57,
484
+ "slot_index": 2
485
+ },
486
+ {
487
+ "name": "blended_latent",
488
+ "type": "LATENT",
489
+ "link": 60
490
+ },
491
+ {
492
+ "name": "latent",
493
+ "type": "LATENT",
494
+ "link": 61
495
+ }
496
+ ],
497
+ "outputs": [
498
+ {
499
+ "name": "MODEL",
500
+ "type": "MODEL",
501
+ "links": [
502
+ 62
503
+ ],
504
+ "shape": 3,
505
+ "slot_index": 0
506
+ },
507
+ {
508
+ "name": "CONDITIONING",
509
+ "type": "CONDITIONING",
510
+ "links": [
511
+ 63
512
+ ],
513
+ "shape": 3,
514
+ "slot_index": 1
515
+ },
516
+ {
517
+ "name": "CONDITIONING",
518
+ "type": "CONDITIONING",
519
+ "links": [
520
+ 64
521
+ ],
522
+ "shape": 3,
523
+ "slot_index": 2
524
+ }
525
+ ],
526
+ "properties": {
527
+ "Node name for S&R": "LayeredDiffusionDiffApply"
528
+ },
529
+ "widgets_values": [
530
+ "SDXL, Background",
531
+ 1
532
+ ],
533
+ "color": "#232",
534
+ "bgcolor": "#353"
535
+ },
536
+ {
537
+ "id": 40,
538
+ "type": "LayeredDiffusionDecodeRGBA",
539
+ "pos": [
540
+ 1533,
541
+ 189
542
+ ],
543
+ "size": {
544
+ "0": 243.60000610351562,
545
+ "1": 102
546
+ },
547
+ "flags": {},
548
+ "order": 11,
549
+ "mode": 0,
550
+ "inputs": [
551
+ {
552
+ "name": "samples",
553
+ "type": "LATENT",
554
+ "link": 67
555
+ },
556
+ {
557
+ "name": "images",
558
+ "type": "IMAGE",
559
+ "link": 65
560
+ }
561
+ ],
562
+ "outputs": [
563
+ {
564
+ "name": "IMAGE",
565
+ "type": "IMAGE",
566
+ "links": [
567
+ 66
568
+ ],
569
+ "shape": 3,
570
+ "slot_index": 0
571
+ }
572
+ ],
573
+ "properties": {
574
+ "Node name for S&R": "LayeredDiffusionDecodeRGBA"
575
+ },
576
+ "widgets_values": [
577
+ "SDXL",
578
+ 16
579
+ ],
580
+ "color": "#232",
581
+ "bgcolor": "#353"
582
+ }
583
+ ],
584
+ "links": [
585
+ [
586
+ 2,
587
+ 5,
588
+ 0,
589
+ 3,
590
+ 3,
591
+ "LATENT"
592
+ ],
593
+ [
594
+ 3,
595
+ 4,
596
+ 1,
597
+ 6,
598
+ 0,
599
+ "CLIP"
600
+ ],
601
+ [
602
+ 5,
603
+ 4,
604
+ 1,
605
+ 7,
606
+ 0,
607
+ "CLIP"
608
+ ],
609
+ [
610
+ 21,
611
+ 3,
612
+ 0,
613
+ 14,
614
+ 0,
615
+ "LATENT"
616
+ ],
617
+ [
618
+ 22,
619
+ 4,
620
+ 2,
621
+ 14,
622
+ 1,
623
+ "VAE"
624
+ ],
625
+ [
626
+ 49,
627
+ 4,
628
+ 2,
629
+ 29,
630
+ 1,
631
+ "VAE"
632
+ ],
633
+ [
634
+ 53,
635
+ 30,
636
+ 0,
637
+ 29,
638
+ 0,
639
+ "IMAGE"
640
+ ],
641
+ [
642
+ 55,
643
+ 4,
644
+ 0,
645
+ 37,
646
+ 0,
647
+ "MODEL"
648
+ ],
649
+ [
650
+ 56,
651
+ 6,
652
+ 0,
653
+ 37,
654
+ 1,
655
+ "CONDITIONING"
656
+ ],
657
+ [
658
+ 57,
659
+ 7,
660
+ 0,
661
+ 37,
662
+ 2,
663
+ "CONDITIONING"
664
+ ],
665
+ [
666
+ 58,
667
+ 4,
668
+ 2,
669
+ 39,
670
+ 1,
671
+ "VAE"
672
+ ],
673
+ [
674
+ 59,
675
+ 38,
676
+ 0,
677
+ 39,
678
+ 0,
679
+ "IMAGE"
680
+ ],
681
+ [
682
+ 60,
683
+ 39,
684
+ 0,
685
+ 37,
686
+ 3,
687
+ "LATENT"
688
+ ],
689
+ [
690
+ 61,
691
+ 29,
692
+ 0,
693
+ 37,
694
+ 4,
695
+ "LATENT"
696
+ ],
697
+ [
698
+ 62,
699
+ 37,
700
+ 0,
701
+ 3,
702
+ 0,
703
+ "MODEL"
704
+ ],
705
+ [
706
+ 63,
707
+ 37,
708
+ 1,
709
+ 3,
710
+ 1,
711
+ "CONDITIONING"
712
+ ],
713
+ [
714
+ 64,
715
+ 37,
716
+ 2,
717
+ 3,
718
+ 2,
719
+ "CONDITIONING"
720
+ ],
721
+ [
722
+ 65,
723
+ 14,
724
+ 0,
725
+ 40,
726
+ 1,
727
+ "IMAGE"
728
+ ],
729
+ [
730
+ 66,
731
+ 40,
732
+ 0,
733
+ 20,
734
+ 0,
735
+ "IMAGE"
736
+ ],
737
+ [
738
+ 67,
739
+ 3,
740
+ 0,
741
+ 40,
742
+ 0,
743
+ "LATENT"
744
+ ]
745
+ ],
746
+ "groups": [],
747
+ "config": {},
748
+ "extra": {},
749
+ "version": 0.4
750
+ }
ComfyUI/custom_nodes/layerdiffuse/examples/layer_diffusion_diff_bg_stop_at.json ADDED
@@ -0,0 +1,877 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "last_node_id": 45,
3
+ "last_link_id": 86,
4
+ "nodes": [
5
+ {
6
+ "id": 5,
7
+ "type": "EmptyLatentImage",
8
+ "pos": [
9
+ 475,
10
+ 666
11
+ ],
12
+ "size": {
13
+ "0": 315,
14
+ "1": 106
15
+ },
16
+ "flags": {},
17
+ "order": 0,
18
+ "mode": 0,
19
+ "outputs": [
20
+ {
21
+ "name": "LATENT",
22
+ "type": "LATENT",
23
+ "links": [
24
+ 2
25
+ ],
26
+ "slot_index": 0
27
+ }
28
+ ],
29
+ "properties": {
30
+ "Node name for S&R": "EmptyLatentImage"
31
+ },
32
+ "widgets_values": [
33
+ 1024,
34
+ 1024,
35
+ 1
36
+ ]
37
+ },
38
+ {
39
+ "id": 38,
40
+ "type": "LoadImage",
41
+ "pos": [
42
+ -137,
43
+ -388
44
+ ],
45
+ "size": {
46
+ "0": 288.47406005859375,
47
+ "1": 317.46051025390625
48
+ },
49
+ "flags": {},
50
+ "order": 1,
51
+ "mode": 0,
52
+ "outputs": [
53
+ {
54
+ "name": "IMAGE",
55
+ "type": "IMAGE",
56
+ "links": [
57
+ 59
58
+ ],
59
+ "shape": 3
60
+ },
61
+ {
62
+ "name": "MASK",
63
+ "type": "MASK",
64
+ "links": null,
65
+ "shape": 3
66
+ }
67
+ ],
68
+ "properties": {
69
+ "Node name for S&R": "LoadImage"
70
+ },
71
+ "widgets_values": [
72
+ "blended.png",
73
+ "image"
74
+ ]
75
+ },
76
+ {
77
+ "id": 39,
78
+ "type": "VAEEncode",
79
+ "pos": [
80
+ 201,
81
+ -391
82
+ ],
83
+ "size": {
84
+ "0": 210,
85
+ "1": 46
86
+ },
87
+ "flags": {},
88
+ "order": 7,
89
+ "mode": 0,
90
+ "inputs": [
91
+ {
92
+ "name": "pixels",
93
+ "type": "IMAGE",
94
+ "link": 59,
95
+ "slot_index": 0
96
+ },
97
+ {
98
+ "name": "vae",
99
+ "type": "VAE",
100
+ "link": 58,
101
+ "slot_index": 1
102
+ }
103
+ ],
104
+ "outputs": [
105
+ {
106
+ "name": "LATENT",
107
+ "type": "LATENT",
108
+ "links": [
109
+ 60
110
+ ],
111
+ "shape": 3,
112
+ "slot_index": 0
113
+ }
114
+ ],
115
+ "properties": {
116
+ "Node name for S&R": "VAEEncode"
117
+ }
118
+ },
119
+ {
120
+ "id": 29,
121
+ "type": "VAEEncode",
122
+ "pos": [
123
+ 210,
124
+ -20
125
+ ],
126
+ "size": {
127
+ "0": 210,
128
+ "1": 46
129
+ },
130
+ "flags": {},
131
+ "order": 6,
132
+ "mode": 0,
133
+ "inputs": [
134
+ {
135
+ "name": "pixels",
136
+ "type": "IMAGE",
137
+ "link": 53
138
+ },
139
+ {
140
+ "name": "vae",
141
+ "type": "VAE",
142
+ "link": 49,
143
+ "slot_index": 1
144
+ }
145
+ ],
146
+ "outputs": [
147
+ {
148
+ "name": "LATENT",
149
+ "type": "LATENT",
150
+ "links": [
151
+ 61
152
+ ],
153
+ "shape": 3,
154
+ "slot_index": 0
155
+ }
156
+ ],
157
+ "properties": {
158
+ "Node name for S&R": "VAEEncode"
159
+ }
160
+ },
161
+ {
162
+ "id": 30,
163
+ "type": "LoadImage",
164
+ "pos": [
165
+ -146,
166
+ -22
167
+ ],
168
+ "size": {
169
+ "0": 315,
170
+ "1": 314
171
+ },
172
+ "flags": {},
173
+ "order": 2,
174
+ "mode": 0,
175
+ "outputs": [
176
+ {
177
+ "name": "IMAGE",
178
+ "type": "IMAGE",
179
+ "links": [
180
+ 53
181
+ ],
182
+ "shape": 3,
183
+ "slot_index": 0
184
+ },
185
+ {
186
+ "name": "MASK",
187
+ "type": "MASK",
188
+ "links": null,
189
+ "shape": 3
190
+ }
191
+ ],
192
+ "properties": {
193
+ "Node name for S&R": "LoadImage"
194
+ },
195
+ "widgets_values": [
196
+ "dog.png",
197
+ "image"
198
+ ]
199
+ },
200
+ {
201
+ "id": 6,
202
+ "type": "CLIPTextEncode",
203
+ "pos": [
204
+ 415,
205
+ 186
206
+ ],
207
+ "size": {
208
+ "0": 422.84503173828125,
209
+ "1": 164.31304931640625
210
+ },
211
+ "flags": {},
212
+ "order": 4,
213
+ "mode": 0,
214
+ "inputs": [
215
+ {
216
+ "name": "clip",
217
+ "type": "CLIP",
218
+ "link": 3
219
+ }
220
+ ],
221
+ "outputs": [
222
+ {
223
+ "name": "CONDITIONING",
224
+ "type": "CONDITIONING",
225
+ "links": [
226
+ 56,
227
+ 81
228
+ ],
229
+ "slot_index": 0
230
+ }
231
+ ],
232
+ "properties": {
233
+ "Node name for S&R": "CLIPTextEncode"
234
+ },
235
+ "widgets_values": [
236
+ "a room, high quality\n\n"
237
+ ]
238
+ },
239
+ {
240
+ "id": 7,
241
+ "type": "CLIPTextEncode",
242
+ "pos": [
243
+ 413,
244
+ 389
245
+ ],
246
+ "size": {
247
+ "0": 425.27801513671875,
248
+ "1": 180.6060791015625
249
+ },
250
+ "flags": {},
251
+ "order": 5,
252
+ "mode": 0,
253
+ "inputs": [
254
+ {
255
+ "name": "clip",
256
+ "type": "CLIP",
257
+ "link": 5
258
+ }
259
+ ],
260
+ "outputs": [
261
+ {
262
+ "name": "CONDITIONING",
263
+ "type": "CONDITIONING",
264
+ "links": [
265
+ 57,
266
+ 82
267
+ ],
268
+ "slot_index": 0
269
+ }
270
+ ],
271
+ "properties": {
272
+ "Node name for S&R": "CLIPTextEncode"
273
+ },
274
+ "widgets_values": [
275
+ "text, watermark"
276
+ ]
277
+ },
278
+ {
279
+ "id": 42,
280
+ "type": "PreviewImage",
281
+ "pos": [
282
+ 1830,
283
+ -500
284
+ ],
285
+ "size": {
286
+ "0": 611.2340087890625,
287
+ "1": 633.9354858398438
288
+ },
289
+ "flags": {},
290
+ "order": 12,
291
+ "mode": 0,
292
+ "inputs": [
293
+ {
294
+ "name": "images",
295
+ "type": "IMAGE",
296
+ "link": 76
297
+ }
298
+ ],
299
+ "properties": {
300
+ "Node name for S&R": "PreviewImage"
301
+ }
302
+ },
303
+ {
304
+ "id": 20,
305
+ "type": "PreviewImage",
306
+ "pos": [
307
+ 1830,
308
+ 186
309
+ ],
310
+ "size": {
311
+ "0": 611.2340087890625,
312
+ "1": 633.9354858398438
313
+ },
314
+ "flags": {},
315
+ "order": 14,
316
+ "mode": 0,
317
+ "inputs": [
318
+ {
319
+ "name": "images",
320
+ "type": "IMAGE",
321
+ "link": 29
322
+ }
323
+ ],
324
+ "properties": {
325
+ "Node name for S&R": "PreviewImage"
326
+ }
327
+ },
328
+ {
329
+ "id": 4,
330
+ "type": "CheckpointLoaderSimple",
331
+ "pos": [
332
+ 5,
333
+ 479
334
+ ],
335
+ "size": {
336
+ "0": 315,
337
+ "1": 98
338
+ },
339
+ "flags": {},
340
+ "order": 3,
341
+ "mode": 0,
342
+ "outputs": [
343
+ {
344
+ "name": "MODEL",
345
+ "type": "MODEL",
346
+ "links": [
347
+ 55,
348
+ 80
349
+ ],
350
+ "slot_index": 0
351
+ },
352
+ {
353
+ "name": "CLIP",
354
+ "type": "CLIP",
355
+ "links": [
356
+ 3,
357
+ 5
358
+ ],
359
+ "slot_index": 1
360
+ },
361
+ {
362
+ "name": "VAE",
363
+ "type": "VAE",
364
+ "links": [
365
+ 22,
366
+ 49,
367
+ 58,
368
+ 75
369
+ ],
370
+ "slot_index": 2
371
+ }
372
+ ],
373
+ "properties": {
374
+ "Node name for S&R": "CheckpointLoaderSimple"
375
+ },
376
+ "widgets_values": [
377
+ "juggernautXL_v8Rundiffusion.safetensors"
378
+ ]
379
+ },
380
+ {
381
+ "id": 41,
382
+ "type": "VAEDecode",
383
+ "pos": [
384
+ 1600,
385
+ -500
386
+ ],
387
+ "size": {
388
+ "0": 210,
389
+ "1": 46
390
+ },
391
+ "flags": {},
392
+ "order": 10,
393
+ "mode": 0,
394
+ "inputs": [
395
+ {
396
+ "name": "samples",
397
+ "type": "LATENT",
398
+ "link": 77
399
+ },
400
+ {
401
+ "name": "vae",
402
+ "type": "VAE",
403
+ "link": 75,
404
+ "slot_index": 1
405
+ }
406
+ ],
407
+ "outputs": [
408
+ {
409
+ "name": "IMAGE",
410
+ "type": "IMAGE",
411
+ "links": [
412
+ 76
413
+ ],
414
+ "shape": 3,
415
+ "slot_index": 0
416
+ }
417
+ ],
418
+ "properties": {
419
+ "Node name for S&R": "VAEDecode"
420
+ }
421
+ },
422
+ {
423
+ "id": 14,
424
+ "type": "VAEDecode",
425
+ "pos": [
426
+ 1588,
427
+ 186
428
+ ],
429
+ "size": {
430
+ "0": 210,
431
+ "1": 46
432
+ },
433
+ "flags": {},
434
+ "order": 13,
435
+ "mode": 0,
436
+ "inputs": [
437
+ {
438
+ "name": "samples",
439
+ "type": "LATENT",
440
+ "link": 85
441
+ },
442
+ {
443
+ "name": "vae",
444
+ "type": "VAE",
445
+ "link": 22,
446
+ "slot_index": 1
447
+ }
448
+ ],
449
+ "outputs": [
450
+ {
451
+ "name": "IMAGE",
452
+ "type": "IMAGE",
453
+ "links": [
454
+ 29
455
+ ],
456
+ "shape": 3,
457
+ "slot_index": 0
458
+ }
459
+ ],
460
+ "properties": {
461
+ "Node name for S&R": "VAEDecode"
462
+ }
463
+ },
464
+ {
465
+ "id": 3,
466
+ "type": "KSampler",
467
+ "pos": [
468
+ 913,
469
+ 181
470
+ ],
471
+ "size": {
472
+ "0": 315,
473
+ "1": 262
474
+ },
475
+ "flags": {},
476
+ "order": 9,
477
+ "mode": 0,
478
+ "inputs": [
479
+ {
480
+ "name": "model",
481
+ "type": "MODEL",
482
+ "link": 62
483
+ },
484
+ {
485
+ "name": "positive",
486
+ "type": "CONDITIONING",
487
+ "link": 63
488
+ },
489
+ {
490
+ "name": "negative",
491
+ "type": "CONDITIONING",
492
+ "link": 64
493
+ },
494
+ {
495
+ "name": "latent_image",
496
+ "type": "LATENT",
497
+ "link": 2
498
+ }
499
+ ],
500
+ "outputs": [
501
+ {
502
+ "name": "LATENT",
503
+ "type": "LATENT",
504
+ "links": [
505
+ 77,
506
+ 86
507
+ ],
508
+ "slot_index": 0
509
+ }
510
+ ],
511
+ "properties": {
512
+ "Node name for S&R": "KSampler"
513
+ },
514
+ "widgets_values": [
515
+ 462370085958750,
516
+ "fixed",
517
+ 20,
518
+ 8,
519
+ "euler",
520
+ "normal",
521
+ 1
522
+ ]
523
+ },
524
+ {
525
+ "id": 45,
526
+ "type": "KSamplerAdvanced",
527
+ "pos": [
528
+ 1249,
529
+ 179
530
+ ],
531
+ "size": {
532
+ "0": 315,
533
+ "1": 334
534
+ },
535
+ "flags": {},
536
+ "order": 11,
537
+ "mode": 0,
538
+ "inputs": [
539
+ {
540
+ "name": "model",
541
+ "type": "MODEL",
542
+ "link": 80
543
+ },
544
+ {
545
+ "name": "positive",
546
+ "type": "CONDITIONING",
547
+ "link": 81
548
+ },
549
+ {
550
+ "name": "negative",
551
+ "type": "CONDITIONING",
552
+ "link": 82
553
+ },
554
+ {
555
+ "name": "latent_image",
556
+ "type": "LATENT",
557
+ "link": 86
558
+ }
559
+ ],
560
+ "outputs": [
561
+ {
562
+ "name": "LATENT",
563
+ "type": "LATENT",
564
+ "links": [
565
+ 85
566
+ ],
567
+ "shape": 3,
568
+ "slot_index": 0
569
+ }
570
+ ],
571
+ "properties": {
572
+ "Node name for S&R": "KSamplerAdvanced"
573
+ },
574
+ "widgets_values": [
575
+ "enable",
576
+ 0,
577
+ "fixed",
578
+ 20,
579
+ 8,
580
+ "euler",
581
+ "normal",
582
+ 10,
583
+ 10000,
584
+ "disable"
585
+ ]
586
+ },
587
+ {
588
+ "id": 37,
589
+ "type": "LayeredDiffusionDiffApply",
590
+ "pos": [
591
+ 456,
592
+ -44
593
+ ],
594
+ "size": {
595
+ "0": 342.5999755859375,
596
+ "1": 186
597
+ },
598
+ "flags": {},
599
+ "order": 8,
600
+ "mode": 0,
601
+ "inputs": [
602
+ {
603
+ "name": "model",
604
+ "type": "MODEL",
605
+ "link": 55,
606
+ "slot_index": 0
607
+ },
608
+ {
609
+ "name": "cond",
610
+ "type": "CONDITIONING",
611
+ "link": 56,
612
+ "slot_index": 1
613
+ },
614
+ {
615
+ "name": "uncond",
616
+ "type": "CONDITIONING",
617
+ "link": 57,
618
+ "slot_index": 2
619
+ },
620
+ {
621
+ "name": "blended_latent",
622
+ "type": "LATENT",
623
+ "link": 60
624
+ },
625
+ {
626
+ "name": "latent",
627
+ "type": "LATENT",
628
+ "link": 61
629
+ }
630
+ ],
631
+ "outputs": [
632
+ {
633
+ "name": "MODEL",
634
+ "type": "MODEL",
635
+ "links": [
636
+ 62
637
+ ],
638
+ "shape": 3,
639
+ "slot_index": 0
640
+ },
641
+ {
642
+ "name": "CONDITIONING",
643
+ "type": "CONDITIONING",
644
+ "links": [
645
+ 63
646
+ ],
647
+ "shape": 3,
648
+ "slot_index": 1
649
+ },
650
+ {
651
+ "name": "CONDITIONING",
652
+ "type": "CONDITIONING",
653
+ "links": [
654
+ 64
655
+ ],
656
+ "shape": 3,
657
+ "slot_index": 2
658
+ }
659
+ ],
660
+ "properties": {
661
+ "Node name for S&R": "LayeredDiffusionDiffApply"
662
+ },
663
+ "widgets_values": [
664
+ "SDXL, Foreground",
665
+ 1
666
+ ],
667
+ "color": "#232",
668
+ "bgcolor": "#353"
669
+ }
670
+ ],
671
+ "links": [
672
+ [
673
+ 2,
674
+ 5,
675
+ 0,
676
+ 3,
677
+ 3,
678
+ "LATENT"
679
+ ],
680
+ [
681
+ 3,
682
+ 4,
683
+ 1,
684
+ 6,
685
+ 0,
686
+ "CLIP"
687
+ ],
688
+ [
689
+ 5,
690
+ 4,
691
+ 1,
692
+ 7,
693
+ 0,
694
+ "CLIP"
695
+ ],
696
+ [
697
+ 22,
698
+ 4,
699
+ 2,
700
+ 14,
701
+ 1,
702
+ "VAE"
703
+ ],
704
+ [
705
+ 29,
706
+ 14,
707
+ 0,
708
+ 20,
709
+ 0,
710
+ "IMAGE"
711
+ ],
712
+ [
713
+ 49,
714
+ 4,
715
+ 2,
716
+ 29,
717
+ 1,
718
+ "VAE"
719
+ ],
720
+ [
721
+ 53,
722
+ 30,
723
+ 0,
724
+ 29,
725
+ 0,
726
+ "IMAGE"
727
+ ],
728
+ [
729
+ 55,
730
+ 4,
731
+ 0,
732
+ 37,
733
+ 0,
734
+ "MODEL"
735
+ ],
736
+ [
737
+ 56,
738
+ 6,
739
+ 0,
740
+ 37,
741
+ 1,
742
+ "CONDITIONING"
743
+ ],
744
+ [
745
+ 57,
746
+ 7,
747
+ 0,
748
+ 37,
749
+ 2,
750
+ "CONDITIONING"
751
+ ],
752
+ [
753
+ 58,
754
+ 4,
755
+ 2,
756
+ 39,
757
+ 1,
758
+ "VAE"
759
+ ],
760
+ [
761
+ 59,
762
+ 38,
763
+ 0,
764
+ 39,
765
+ 0,
766
+ "IMAGE"
767
+ ],
768
+ [
769
+ 60,
770
+ 39,
771
+ 0,
772
+ 37,
773
+ 3,
774
+ "LATENT"
775
+ ],
776
+ [
777
+ 61,
778
+ 29,
779
+ 0,
780
+ 37,
781
+ 4,
782
+ "LATENT"
783
+ ],
784
+ [
785
+ 62,
786
+ 37,
787
+ 0,
788
+ 3,
789
+ 0,
790
+ "MODEL"
791
+ ],
792
+ [
793
+ 63,
794
+ 37,
795
+ 1,
796
+ 3,
797
+ 1,
798
+ "CONDITIONING"
799
+ ],
800
+ [
801
+ 64,
802
+ 37,
803
+ 2,
804
+ 3,
805
+ 2,
806
+ "CONDITIONING"
807
+ ],
808
+ [
809
+ 75,
810
+ 4,
811
+ 2,
812
+ 41,
813
+ 1,
814
+ "VAE"
815
+ ],
816
+ [
817
+ 76,
818
+ 41,
819
+ 0,
820
+ 42,
821
+ 0,
822
+ "IMAGE"
823
+ ],
824
+ [
825
+ 77,
826
+ 3,
827
+ 0,
828
+ 41,
829
+ 0,
830
+ "LATENT"
831
+ ],
832
+ [
833
+ 80,
834
+ 4,
835
+ 0,
836
+ 45,
837
+ 0,
838
+ "MODEL"
839
+ ],
840
+ [
841
+ 81,
842
+ 6,
843
+ 0,
844
+ 45,
845
+ 1,
846
+ "CONDITIONING"
847
+ ],
848
+ [
849
+ 82,
850
+ 7,
851
+ 0,
852
+ 45,
853
+ 2,
854
+ "CONDITIONING"
855
+ ],
856
+ [
857
+ 85,
858
+ 45,
859
+ 0,
860
+ 14,
861
+ 0,
862
+ "LATENT"
863
+ ],
864
+ [
865
+ 86,
866
+ 3,
867
+ 0,
868
+ 45,
869
+ 3,
870
+ "LATENT"
871
+ ]
872
+ ],
873
+ "groups": [],
874
+ "config": {},
875
+ "extra": {},
876
+ "version": 0.4
877
+ }
ComfyUI/custom_nodes/layerdiffuse/examples/layer_diffusion_diff_fg.json ADDED
@@ -0,0 +1,686 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "last_node_id": 39,
3
+ "last_link_id": 64,
4
+ "nodes": [
5
+ {
6
+ "id": 4,
7
+ "type": "CheckpointLoaderSimple",
8
+ "pos": [
9
+ 5,
10
+ 479
11
+ ],
12
+ "size": {
13
+ "0": 315,
14
+ "1": 98
15
+ },
16
+ "flags": {},
17
+ "order": 0,
18
+ "mode": 0,
19
+ "outputs": [
20
+ {
21
+ "name": "MODEL",
22
+ "type": "MODEL",
23
+ "links": [
24
+ 55
25
+ ],
26
+ "slot_index": 0
27
+ },
28
+ {
29
+ "name": "CLIP",
30
+ "type": "CLIP",
31
+ "links": [
32
+ 3,
33
+ 5
34
+ ],
35
+ "slot_index": 1
36
+ },
37
+ {
38
+ "name": "VAE",
39
+ "type": "VAE",
40
+ "links": [
41
+ 22,
42
+ 49,
43
+ 58
44
+ ],
45
+ "slot_index": 2
46
+ }
47
+ ],
48
+ "properties": {
49
+ "Node name for S&R": "CheckpointLoaderSimple"
50
+ },
51
+ "widgets_values": [
52
+ "juggernautXL_v8Rundiffusion.safetensors"
53
+ ]
54
+ },
55
+ {
56
+ "id": 7,
57
+ "type": "CLIPTextEncode",
58
+ "pos": [
59
+ 413,
60
+ 389
61
+ ],
62
+ "size": {
63
+ "0": 425.27801513671875,
64
+ "1": 180.6060791015625
65
+ },
66
+ "flags": {},
67
+ "order": 5,
68
+ "mode": 0,
69
+ "inputs": [
70
+ {
71
+ "name": "clip",
72
+ "type": "CLIP",
73
+ "link": 5
74
+ }
75
+ ],
76
+ "outputs": [
77
+ {
78
+ "name": "CONDITIONING",
79
+ "type": "CONDITIONING",
80
+ "links": [
81
+ 57
82
+ ],
83
+ "slot_index": 0
84
+ }
85
+ ],
86
+ "properties": {
87
+ "Node name for S&R": "CLIPTextEncode"
88
+ },
89
+ "widgets_values": [
90
+ "text, watermark"
91
+ ]
92
+ },
93
+ {
94
+ "id": 5,
95
+ "type": "EmptyLatentImage",
96
+ "pos": [
97
+ 475,
98
+ 666
99
+ ],
100
+ "size": {
101
+ "0": 315,
102
+ "1": 106
103
+ },
104
+ "flags": {},
105
+ "order": 1,
106
+ "mode": 0,
107
+ "outputs": [
108
+ {
109
+ "name": "LATENT",
110
+ "type": "LATENT",
111
+ "links": [
112
+ 2
113
+ ],
114
+ "slot_index": 0
115
+ }
116
+ ],
117
+ "properties": {
118
+ "Node name for S&R": "EmptyLatentImage"
119
+ },
120
+ "widgets_values": [
121
+ 1024,
122
+ 1024,
123
+ 1
124
+ ]
125
+ },
126
+ {
127
+ "id": 14,
128
+ "type": "VAEDecode",
129
+ "pos": [
130
+ 1286,
131
+ 187
132
+ ],
133
+ "size": {
134
+ "0": 210,
135
+ "1": 46
136
+ },
137
+ "flags": {},
138
+ "order": 10,
139
+ "mode": 0,
140
+ "inputs": [
141
+ {
142
+ "name": "samples",
143
+ "type": "LATENT",
144
+ "link": 21
145
+ },
146
+ {
147
+ "name": "vae",
148
+ "type": "VAE",
149
+ "link": 22,
150
+ "slot_index": 1
151
+ }
152
+ ],
153
+ "outputs": [
154
+ {
155
+ "name": "IMAGE",
156
+ "type": "IMAGE",
157
+ "links": [
158
+ 29
159
+ ],
160
+ "shape": 3,
161
+ "slot_index": 0
162
+ }
163
+ ],
164
+ "properties": {
165
+ "Node name for S&R": "VAEDecode"
166
+ }
167
+ },
168
+ {
169
+ "id": 20,
170
+ "type": "PreviewImage",
171
+ "pos": [
172
+ 1558,
173
+ 189
174
+ ],
175
+ "size": {
176
+ "0": 611.2340087890625,
177
+ "1": 633.9354858398438
178
+ },
179
+ "flags": {},
180
+ "order": 11,
181
+ "mode": 0,
182
+ "inputs": [
183
+ {
184
+ "name": "images",
185
+ "type": "IMAGE",
186
+ "link": 29
187
+ }
188
+ ],
189
+ "properties": {
190
+ "Node name for S&R": "PreviewImage"
191
+ }
192
+ },
193
+ {
194
+ "id": 3,
195
+ "type": "KSampler",
196
+ "pos": [
197
+ 913,
198
+ 181
199
+ ],
200
+ "size": {
201
+ "0": 315,
202
+ "1": 262
203
+ },
204
+ "flags": {},
205
+ "order": 9,
206
+ "mode": 0,
207
+ "inputs": [
208
+ {
209
+ "name": "model",
210
+ "type": "MODEL",
211
+ "link": 62
212
+ },
213
+ {
214
+ "name": "positive",
215
+ "type": "CONDITIONING",
216
+ "link": 63
217
+ },
218
+ {
219
+ "name": "negative",
220
+ "type": "CONDITIONING",
221
+ "link": 64
222
+ },
223
+ {
224
+ "name": "latent_image",
225
+ "type": "LATENT",
226
+ "link": 2
227
+ }
228
+ ],
229
+ "outputs": [
230
+ {
231
+ "name": "LATENT",
232
+ "type": "LATENT",
233
+ "links": [
234
+ 21
235
+ ],
236
+ "slot_index": 0
237
+ }
238
+ ],
239
+ "properties": {
240
+ "Node name for S&R": "KSampler"
241
+ },
242
+ "widgets_values": [
243
+ 462370085958750,
244
+ "fixed",
245
+ 20,
246
+ 8,
247
+ "euler",
248
+ "normal",
249
+ 1
250
+ ]
251
+ },
252
+ {
253
+ "id": 38,
254
+ "type": "LoadImage",
255
+ "pos": [
256
+ -137,
257
+ -388
258
+ ],
259
+ "size": {
260
+ "0": 288.47406005859375,
261
+ "1": 317.46051025390625
262
+ },
263
+ "flags": {},
264
+ "order": 2,
265
+ "mode": 0,
266
+ "outputs": [
267
+ {
268
+ "name": "IMAGE",
269
+ "type": "IMAGE",
270
+ "links": [
271
+ 59
272
+ ],
273
+ "shape": 3
274
+ },
275
+ {
276
+ "name": "MASK",
277
+ "type": "MASK",
278
+ "links": null,
279
+ "shape": 3
280
+ }
281
+ ],
282
+ "properties": {
283
+ "Node name for S&R": "LoadImage"
284
+ },
285
+ "widgets_values": [
286
+ "blended.png",
287
+ "image"
288
+ ]
289
+ },
290
+ {
291
+ "id": 39,
292
+ "type": "VAEEncode",
293
+ "pos": [
294
+ 201,
295
+ -391
296
+ ],
297
+ "size": {
298
+ "0": 210,
299
+ "1": 46
300
+ },
301
+ "flags": {},
302
+ "order": 6,
303
+ "mode": 0,
304
+ "inputs": [
305
+ {
306
+ "name": "pixels",
307
+ "type": "IMAGE",
308
+ "link": 59,
309
+ "slot_index": 0
310
+ },
311
+ {
312
+ "name": "vae",
313
+ "type": "VAE",
314
+ "link": 58,
315
+ "slot_index": 1
316
+ }
317
+ ],
318
+ "outputs": [
319
+ {
320
+ "name": "LATENT",
321
+ "type": "LATENT",
322
+ "links": [
323
+ 60
324
+ ],
325
+ "shape": 3,
326
+ "slot_index": 0
327
+ }
328
+ ],
329
+ "properties": {
330
+ "Node name for S&R": "VAEEncode"
331
+ }
332
+ },
333
+ {
334
+ "id": 29,
335
+ "type": "VAEEncode",
336
+ "pos": [
337
+ 210,
338
+ -20
339
+ ],
340
+ "size": {
341
+ "0": 210,
342
+ "1": 46
343
+ },
344
+ "flags": {},
345
+ "order": 7,
346
+ "mode": 0,
347
+ "inputs": [
348
+ {
349
+ "name": "pixels",
350
+ "type": "IMAGE",
351
+ "link": 53
352
+ },
353
+ {
354
+ "name": "vae",
355
+ "type": "VAE",
356
+ "link": 49,
357
+ "slot_index": 1
358
+ }
359
+ ],
360
+ "outputs": [
361
+ {
362
+ "name": "LATENT",
363
+ "type": "LATENT",
364
+ "links": [
365
+ 61
366
+ ],
367
+ "shape": 3,
368
+ "slot_index": 0
369
+ }
370
+ ],
371
+ "properties": {
372
+ "Node name for S&R": "VAEEncode"
373
+ }
374
+ },
375
+ {
376
+ "id": 6,
377
+ "type": "CLIPTextEncode",
378
+ "pos": [
379
+ 415,
380
+ 186
381
+ ],
382
+ "size": {
383
+ "0": 422.84503173828125,
384
+ "1": 164.31304931640625
385
+ },
386
+ "flags": {},
387
+ "order": 4,
388
+ "mode": 0,
389
+ "inputs": [
390
+ {
391
+ "name": "clip",
392
+ "type": "CLIP",
393
+ "link": 3
394
+ }
395
+ ],
396
+ "outputs": [
397
+ {
398
+ "name": "CONDITIONING",
399
+ "type": "CONDITIONING",
400
+ "links": [
401
+ 56
402
+ ],
403
+ "slot_index": 0
404
+ }
405
+ ],
406
+ "properties": {
407
+ "Node name for S&R": "CLIPTextEncode"
408
+ },
409
+ "widgets_values": [
410
+ "a room, high quality\n\n"
411
+ ]
412
+ },
413
+ {
414
+ "id": 30,
415
+ "type": "LoadImage",
416
+ "pos": [
417
+ -146,
418
+ -22
419
+ ],
420
+ "size": {
421
+ "0": 315,
422
+ "1": 314
423
+ },
424
+ "flags": {},
425
+ "order": 3,
426
+ "mode": 0,
427
+ "outputs": [
428
+ {
429
+ "name": "IMAGE",
430
+ "type": "IMAGE",
431
+ "links": [
432
+ 53
433
+ ],
434
+ "shape": 3,
435
+ "slot_index": 0
436
+ },
437
+ {
438
+ "name": "MASK",
439
+ "type": "MASK",
440
+ "links": null,
441
+ "shape": 3
442
+ }
443
+ ],
444
+ "properties": {
445
+ "Node name for S&R": "LoadImage"
446
+ },
447
+ "widgets_values": [
448
+ "dog.png",
449
+ "image"
450
+ ]
451
+ },
452
+ {
453
+ "id": 37,
454
+ "type": "LayeredDiffusionDiffApply",
455
+ "pos": [
456
+ 456,
457
+ -44
458
+ ],
459
+ "size": {
460
+ "0": 342.5999755859375,
461
+ "1": 162
462
+ },
463
+ "flags": {},
464
+ "order": 8,
465
+ "mode": 0,
466
+ "inputs": [
467
+ {
468
+ "name": "model",
469
+ "type": "MODEL",
470
+ "link": 55,
471
+ "slot_index": 0
472
+ },
473
+ {
474
+ "name": "cond",
475
+ "type": "CONDITIONING",
476
+ "link": 56,
477
+ "slot_index": 1
478
+ },
479
+ {
480
+ "name": "uncond",
481
+ "type": "CONDITIONING",
482
+ "link": 57,
483
+ "slot_index": 2
484
+ },
485
+ {
486
+ "name": "blended_latent",
487
+ "type": "LATENT",
488
+ "link": 60
489
+ },
490
+ {
491
+ "name": "latent",
492
+ "type": "LATENT",
493
+ "link": 61
494
+ }
495
+ ],
496
+ "outputs": [
497
+ {
498
+ "name": "MODEL",
499
+ "type": "MODEL",
500
+ "links": [
501
+ 62
502
+ ],
503
+ "shape": 3,
504
+ "slot_index": 0
505
+ },
506
+ {
507
+ "name": "CONDITIONING",
508
+ "type": "CONDITIONING",
509
+ "links": [
510
+ 63
511
+ ],
512
+ "shape": 3,
513
+ "slot_index": 1
514
+ },
515
+ {
516
+ "name": "CONDITIONING",
517
+ "type": "CONDITIONING",
518
+ "links": [
519
+ 64
520
+ ],
521
+ "shape": 3,
522
+ "slot_index": 2
523
+ }
524
+ ],
525
+ "properties": {
526
+ "Node name for S&R": "LayeredDiffusionDiffApply"
527
+ },
528
+ "widgets_values": [
529
+ "SDXL, Foreground",
530
+ 1
531
+ ],
532
+ "color": "#232",
533
+ "bgcolor": "#353"
534
+ }
535
+ ],
536
+ "links": [
537
+ [
538
+ 2,
539
+ 5,
540
+ 0,
541
+ 3,
542
+ 3,
543
+ "LATENT"
544
+ ],
545
+ [
546
+ 3,
547
+ 4,
548
+ 1,
549
+ 6,
550
+ 0,
551
+ "CLIP"
552
+ ],
553
+ [
554
+ 5,
555
+ 4,
556
+ 1,
557
+ 7,
558
+ 0,
559
+ "CLIP"
560
+ ],
561
+ [
562
+ 21,
563
+ 3,
564
+ 0,
565
+ 14,
566
+ 0,
567
+ "LATENT"
568
+ ],
569
+ [
570
+ 22,
571
+ 4,
572
+ 2,
573
+ 14,
574
+ 1,
575
+ "VAE"
576
+ ],
577
+ [
578
+ 29,
579
+ 14,
580
+ 0,
581
+ 20,
582
+ 0,
583
+ "IMAGE"
584
+ ],
585
+ [
586
+ 49,
587
+ 4,
588
+ 2,
589
+ 29,
590
+ 1,
591
+ "VAE"
592
+ ],
593
+ [
594
+ 53,
595
+ 30,
596
+ 0,
597
+ 29,
598
+ 0,
599
+ "IMAGE"
600
+ ],
601
+ [
602
+ 55,
603
+ 4,
604
+ 0,
605
+ 37,
606
+ 0,
607
+ "MODEL"
608
+ ],
609
+ [
610
+ 56,
611
+ 6,
612
+ 0,
613
+ 37,
614
+ 1,
615
+ "CONDITIONING"
616
+ ],
617
+ [
618
+ 57,
619
+ 7,
620
+ 0,
621
+ 37,
622
+ 2,
623
+ "CONDITIONING"
624
+ ],
625
+ [
626
+ 58,
627
+ 4,
628
+ 2,
629
+ 39,
630
+ 1,
631
+ "VAE"
632
+ ],
633
+ [
634
+ 59,
635
+ 38,
636
+ 0,
637
+ 39,
638
+ 0,
639
+ "IMAGE"
640
+ ],
641
+ [
642
+ 60,
643
+ 39,
644
+ 0,
645
+ 37,
646
+ 3,
647
+ "LATENT"
648
+ ],
649
+ [
650
+ 61,
651
+ 29,
652
+ 0,
653
+ 37,
654
+ 4,
655
+ "LATENT"
656
+ ],
657
+ [
658
+ 62,
659
+ 37,
660
+ 0,
661
+ 3,
662
+ 0,
663
+ "MODEL"
664
+ ],
665
+ [
666
+ 63,
667
+ 37,
668
+ 1,
669
+ 3,
670
+ 1,
671
+ "CONDITIONING"
672
+ ],
673
+ [
674
+ 64,
675
+ 37,
676
+ 2,
677
+ 3,
678
+ 2,
679
+ "CONDITIONING"
680
+ ]
681
+ ],
682
+ "groups": [],
683
+ "config": {},
684
+ "extra": {},
685
+ "version": 0.4
686
+ }
ComfyUI/custom_nodes/layerdiffuse/examples/layer_diffusion_fg_example.json ADDED
@@ -0,0 +1,733 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "last_node_id": 29,
3
+ "last_link_id": 40,
4
+ "nodes": [
5
+ {
6
+ "id": 7,
7
+ "type": "CLIPTextEncode",
8
+ "pos": [
9
+ 413,
10
+ 389
11
+ ],
12
+ "size": {
13
+ "0": 425.27801513671875,
14
+ "1": 180.6060791015625
15
+ },
16
+ "flags": {},
17
+ "order": 4,
18
+ "mode": 0,
19
+ "inputs": [
20
+ {
21
+ "name": "clip",
22
+ "type": "CLIP",
23
+ "link": 5
24
+ }
25
+ ],
26
+ "outputs": [
27
+ {
28
+ "name": "CONDITIONING",
29
+ "type": "CONDITIONING",
30
+ "links": [
31
+ 6
32
+ ],
33
+ "slot_index": 0
34
+ }
35
+ ],
36
+ "properties": {
37
+ "Node name for S&R": "CLIPTextEncode"
38
+ },
39
+ "widgets_values": [
40
+ "text, watermark"
41
+ ]
42
+ },
43
+ {
44
+ "id": 6,
45
+ "type": "CLIPTextEncode",
46
+ "pos": [
47
+ 415,
48
+ 186
49
+ ],
50
+ "size": {
51
+ "0": 422.84503173828125,
52
+ "1": 164.31304931640625
53
+ },
54
+ "flags": {},
55
+ "order": 3,
56
+ "mode": 0,
57
+ "inputs": [
58
+ {
59
+ "name": "clip",
60
+ "type": "CLIP",
61
+ "link": 3
62
+ }
63
+ ],
64
+ "outputs": [
65
+ {
66
+ "name": "CONDITIONING",
67
+ "type": "CONDITIONING",
68
+ "links": [
69
+ 4
70
+ ],
71
+ "slot_index": 0
72
+ }
73
+ ],
74
+ "properties": {
75
+ "Node name for S&R": "CLIPTextEncode"
76
+ },
77
+ "widgets_values": [
78
+ "beautiful scenery nature glass bottle landscape, , purple galaxy bottle,"
79
+ ]
80
+ },
81
+ {
82
+ "id": 4,
83
+ "type": "CheckpointLoaderSimple",
84
+ "pos": [
85
+ 5,
86
+ 479
87
+ ],
88
+ "size": {
89
+ "0": 315,
90
+ "1": 98
91
+ },
92
+ "flags": {},
93
+ "order": 0,
94
+ "mode": 0,
95
+ "outputs": [
96
+ {
97
+ "name": "MODEL",
98
+ "type": "MODEL",
99
+ "links": [
100
+ 18
101
+ ],
102
+ "slot_index": 0
103
+ },
104
+ {
105
+ "name": "CLIP",
106
+ "type": "CLIP",
107
+ "links": [
108
+ 3,
109
+ 5
110
+ ],
111
+ "slot_index": 1
112
+ },
113
+ {
114
+ "name": "VAE",
115
+ "type": "VAE",
116
+ "links": [
117
+ 22
118
+ ],
119
+ "slot_index": 2
120
+ }
121
+ ],
122
+ "properties": {
123
+ "Node name for S&R": "CheckpointLoaderSimple"
124
+ },
125
+ "widgets_values": [
126
+ "juggernautXL_v8Rundiffusion.safetensors"
127
+ ]
128
+ },
129
+ {
130
+ "id": 14,
131
+ "type": "VAEDecode",
132
+ "pos": [
133
+ 1275,
134
+ 198
135
+ ],
136
+ "size": {
137
+ "0": 210,
138
+ "1": 46
139
+ },
140
+ "flags": {},
141
+ "order": 6,
142
+ "mode": 0,
143
+ "inputs": [
144
+ {
145
+ "name": "samples",
146
+ "type": "LATENT",
147
+ "link": 21
148
+ },
149
+ {
150
+ "name": "vae",
151
+ "type": "VAE",
152
+ "link": 22,
153
+ "slot_index": 1
154
+ }
155
+ ],
156
+ "outputs": [
157
+ {
158
+ "name": "IMAGE",
159
+ "type": "IMAGE",
160
+ "links": [
161
+ 24,
162
+ 29
163
+ ],
164
+ "shape": 3,
165
+ "slot_index": 0
166
+ }
167
+ ],
168
+ "properties": {
169
+ "Node name for S&R": "VAEDecode"
170
+ }
171
+ },
172
+ {
173
+ "id": 20,
174
+ "type": "PreviewImage",
175
+ "pos": [
176
+ 1547,
177
+ 472
178
+ ],
179
+ "size": {
180
+ "0": 289.6058349609375,
181
+ "1": 299.6588134765625
182
+ },
183
+ "flags": {},
184
+ "order": 8,
185
+ "mode": 0,
186
+ "inputs": [
187
+ {
188
+ "name": "images",
189
+ "type": "IMAGE",
190
+ "link": 29
191
+ }
192
+ ],
193
+ "properties": {
194
+ "Node name for S&R": "PreviewImage"
195
+ }
196
+ },
197
+ {
198
+ "id": 5,
199
+ "type": "EmptyLatentImage",
200
+ "pos": [
201
+ 475,
202
+ 707
203
+ ],
204
+ "size": {
205
+ "0": 315,
206
+ "1": 106
207
+ },
208
+ "flags": {},
209
+ "order": 1,
210
+ "mode": 0,
211
+ "outputs": [
212
+ {
213
+ "name": "LATENT",
214
+ "type": "LATENT",
215
+ "links": [
216
+ 2
217
+ ],
218
+ "slot_index": 0
219
+ }
220
+ ],
221
+ "properties": {
222
+ "Node name for S&R": "EmptyLatentImage"
223
+ },
224
+ "widgets_values": [
225
+ 1024,
226
+ 1024,
227
+ 1
228
+ ]
229
+ },
230
+ {
231
+ "id": 3,
232
+ "type": "KSampler",
233
+ "pos": [
234
+ 911,
235
+ 198
236
+ ],
237
+ "size": {
238
+ "0": 315,
239
+ "1": 262
240
+ },
241
+ "flags": {},
242
+ "order": 5,
243
+ "mode": 0,
244
+ "inputs": [
245
+ {
246
+ "name": "model",
247
+ "type": "MODEL",
248
+ "link": 19
249
+ },
250
+ {
251
+ "name": "positive",
252
+ "type": "CONDITIONING",
253
+ "link": 4
254
+ },
255
+ {
256
+ "name": "negative",
257
+ "type": "CONDITIONING",
258
+ "link": 6
259
+ },
260
+ {
261
+ "name": "latent_image",
262
+ "type": "LATENT",
263
+ "link": 2
264
+ }
265
+ ],
266
+ "outputs": [
267
+ {
268
+ "name": "LATENT",
269
+ "type": "LATENT",
270
+ "links": [
271
+ 21,
272
+ 23
273
+ ],
274
+ "slot_index": 0
275
+ }
276
+ ],
277
+ "properties": {
278
+ "Node name for S&R": "KSampler"
279
+ },
280
+ "widgets_values": [
281
+ 984560333937969,
282
+ "randomize",
283
+ 20,
284
+ 8,
285
+ "euler",
286
+ "normal",
287
+ 1
288
+ ]
289
+ },
290
+ {
291
+ "id": 25,
292
+ "type": "PreviewImage",
293
+ "pos": [
294
+ 2244,
295
+ 194
296
+ ],
297
+ "size": {
298
+ "0": 289.6058349609375,
299
+ "1": 299.6588134765625
300
+ },
301
+ "flags": {},
302
+ "order": 12,
303
+ "mode": 0,
304
+ "inputs": [
305
+ {
306
+ "name": "images",
307
+ "type": "IMAGE",
308
+ "link": 33
309
+ }
310
+ ],
311
+ "properties": {
312
+ "Node name for S&R": "PreviewImage"
313
+ }
314
+ },
315
+ {
316
+ "id": 24,
317
+ "type": "MaskToImage",
318
+ "pos": [
319
+ 1921,
320
+ 192
321
+ ],
322
+ "size": {
323
+ "0": 210,
324
+ "1": 26
325
+ },
326
+ "flags": {},
327
+ "order": 10,
328
+ "mode": 0,
329
+ "inputs": [
330
+ {
331
+ "name": "mask",
332
+ "type": "MASK",
333
+ "link": 32
334
+ }
335
+ ],
336
+ "outputs": [
337
+ {
338
+ "name": "IMAGE",
339
+ "type": "IMAGE",
340
+ "links": [
341
+ 33
342
+ ],
343
+ "shape": 3,
344
+ "slot_index": 0
345
+ }
346
+ ],
347
+ "properties": {
348
+ "Node name for S&R": "MaskToImage"
349
+ }
350
+ },
351
+ {
352
+ "id": 23,
353
+ "type": "PreviewImage",
354
+ "pos": [
355
+ 1965,
356
+ 479
357
+ ],
358
+ "size": {
359
+ "0": 289.6058349609375,
360
+ "1": 299.6588134765625
361
+ },
362
+ "flags": {},
363
+ "order": 9,
364
+ "mode": 0,
365
+ "inputs": [
366
+ {
367
+ "name": "images",
368
+ "type": "IMAGE",
369
+ "link": 31
370
+ }
371
+ ],
372
+ "properties": {
373
+ "Node name for S&R": "PreviewImage"
374
+ }
375
+ },
376
+ {
377
+ "id": 27,
378
+ "type": "PreviewImage",
379
+ "pos": [
380
+ 2243,
381
+ -164
382
+ ],
383
+ "size": {
384
+ "0": 289.6058349609375,
385
+ "1": 299.6588134765625
386
+ },
387
+ "flags": {},
388
+ "order": 14,
389
+ "mode": 0,
390
+ "inputs": [
391
+ {
392
+ "name": "images",
393
+ "type": "IMAGE",
394
+ "link": 40
395
+ }
396
+ ],
397
+ "properties": {
398
+ "Node name for S&R": "PreviewImage"
399
+ }
400
+ },
401
+ {
402
+ "id": 15,
403
+ "type": "LayeredDiffusionDecode",
404
+ "pos": [
405
+ 1586,
406
+ 195
407
+ ],
408
+ "size": {
409
+ "0": 210,
410
+ "1": 102
411
+ },
412
+ "flags": {},
413
+ "order": 7,
414
+ "mode": 0,
415
+ "inputs": [
416
+ {
417
+ "name": "samples",
418
+ "type": "LATENT",
419
+ "link": 23
420
+ },
421
+ {
422
+ "name": "images",
423
+ "type": "IMAGE",
424
+ "link": 24
425
+ }
426
+ ],
427
+ "outputs": [
428
+ {
429
+ "name": "IMAGE",
430
+ "type": "IMAGE",
431
+ "links": [
432
+ 31,
433
+ 37
434
+ ],
435
+ "shape": 3,
436
+ "slot_index": 0
437
+ },
438
+ {
439
+ "name": "MASK",
440
+ "type": "MASK",
441
+ "links": [
442
+ 32,
443
+ 38
444
+ ],
445
+ "shape": 3,
446
+ "slot_index": 1
447
+ }
448
+ ],
449
+ "properties": {
450
+ "Node name for S&R": "LayeredDiffusionDecode"
451
+ },
452
+ "widgets_values": [
453
+ "SDXL",
454
+ 16
455
+ ]
456
+ },
457
+ {
458
+ "id": 28,
459
+ "type": "JoinImageWithAlpha",
460
+ "pos": [
461
+ 1928,
462
+ -59
463
+ ],
464
+ "size": {
465
+ "0": 210,
466
+ "1": 46
467
+ },
468
+ "flags": {},
469
+ "order": 13,
470
+ "mode": 0,
471
+ "inputs": [
472
+ {
473
+ "name": "image",
474
+ "type": "IMAGE",
475
+ "link": 37
476
+ },
477
+ {
478
+ "name": "alpha",
479
+ "type": "MASK",
480
+ "link": 39
481
+ }
482
+ ],
483
+ "outputs": [
484
+ {
485
+ "name": "IMAGE",
486
+ "type": "IMAGE",
487
+ "links": [
488
+ 40
489
+ ],
490
+ "shape": 3,
491
+ "slot_index": 0
492
+ }
493
+ ],
494
+ "properties": {
495
+ "Node name for S&R": "JoinImageWithAlpha"
496
+ }
497
+ },
498
+ {
499
+ "id": 29,
500
+ "type": "InvertMask",
501
+ "pos": [
502
+ 1931,
503
+ 44
504
+ ],
505
+ "size": {
506
+ "0": 210,
507
+ "1": 26
508
+ },
509
+ "flags": {},
510
+ "order": 11,
511
+ "mode": 0,
512
+ "inputs": [
513
+ {
514
+ "name": "mask",
515
+ "type": "MASK",
516
+ "link": 38
517
+ }
518
+ ],
519
+ "outputs": [
520
+ {
521
+ "name": "MASK",
522
+ "type": "MASK",
523
+ "links": [
524
+ 39
525
+ ],
526
+ "shape": 3,
527
+ "slot_index": 0
528
+ }
529
+ ],
530
+ "properties": {
531
+ "Node name for S&R": "InvertMask"
532
+ }
533
+ },
534
+ {
535
+ "id": 13,
536
+ "type": "LayeredDiffusionApply",
537
+ "pos": [
538
+ 468,
539
+ -2
540
+ ],
541
+ "size": {
542
+ "0": 327.8314208984375,
543
+ "1": 106.42147827148438
544
+ },
545
+ "flags": {},
546
+ "order": 2,
547
+ "mode": 0,
548
+ "inputs": [
549
+ {
550
+ "name": "model",
551
+ "type": "MODEL",
552
+ "link": 18
553
+ }
554
+ ],
555
+ "outputs": [
556
+ {
557
+ "name": "MODEL",
558
+ "type": "MODEL",
559
+ "links": [
560
+ 19
561
+ ],
562
+ "shape": 3,
563
+ "slot_index": 0
564
+ }
565
+ ],
566
+ "properties": {
567
+ "Node name for S&R": "LayeredDiffusionApply"
568
+ },
569
+ "widgets_values": [
570
+ "SDXL, Conv Injection",
571
+ 1
572
+ ]
573
+ }
574
+ ],
575
+ "links": [
576
+ [
577
+ 2,
578
+ 5,
579
+ 0,
580
+ 3,
581
+ 3,
582
+ "LATENT"
583
+ ],
584
+ [
585
+ 3,
586
+ 4,
587
+ 1,
588
+ 6,
589
+ 0,
590
+ "CLIP"
591
+ ],
592
+ [
593
+ 4,
594
+ 6,
595
+ 0,
596
+ 3,
597
+ 1,
598
+ "CONDITIONING"
599
+ ],
600
+ [
601
+ 5,
602
+ 4,
603
+ 1,
604
+ 7,
605
+ 0,
606
+ "CLIP"
607
+ ],
608
+ [
609
+ 6,
610
+ 7,
611
+ 0,
612
+ 3,
613
+ 2,
614
+ "CONDITIONING"
615
+ ],
616
+ [
617
+ 18,
618
+ 4,
619
+ 0,
620
+ 13,
621
+ 0,
622
+ "MODEL"
623
+ ],
624
+ [
625
+ 19,
626
+ 13,
627
+ 0,
628
+ 3,
629
+ 0,
630
+ "MODEL"
631
+ ],
632
+ [
633
+ 21,
634
+ 3,
635
+ 0,
636
+ 14,
637
+ 0,
638
+ "LATENT"
639
+ ],
640
+ [
641
+ 22,
642
+ 4,
643
+ 2,
644
+ 14,
645
+ 1,
646
+ "VAE"
647
+ ],
648
+ [
649
+ 23,
650
+ 3,
651
+ 0,
652
+ 15,
653
+ 0,
654
+ "LATENT"
655
+ ],
656
+ [
657
+ 24,
658
+ 14,
659
+ 0,
660
+ 15,
661
+ 1,
662
+ "IMAGE"
663
+ ],
664
+ [
665
+ 29,
666
+ 14,
667
+ 0,
668
+ 20,
669
+ 0,
670
+ "IMAGE"
671
+ ],
672
+ [
673
+ 31,
674
+ 15,
675
+ 0,
676
+ 23,
677
+ 0,
678
+ "IMAGE"
679
+ ],
680
+ [
681
+ 32,
682
+ 15,
683
+ 1,
684
+ 24,
685
+ 0,
686
+ "MASK"
687
+ ],
688
+ [
689
+ 33,
690
+ 24,
691
+ 0,
692
+ 25,
693
+ 0,
694
+ "IMAGE"
695
+ ],
696
+ [
697
+ 37,
698
+ 15,
699
+ 0,
700
+ 28,
701
+ 0,
702
+ "IMAGE"
703
+ ],
704
+ [
705
+ 38,
706
+ 15,
707
+ 1,
708
+ 29,
709
+ 0,
710
+ "MASK"
711
+ ],
712
+ [
713
+ 39,
714
+ 29,
715
+ 0,
716
+ 28,
717
+ 1,
718
+ "MASK"
719
+ ],
720
+ [
721
+ 40,
722
+ 28,
723
+ 0,
724
+ 27,
725
+ 0,
726
+ "IMAGE"
727
+ ]
728
+ ],
729
+ "groups": [],
730
+ "config": {},
731
+ "extra": {},
732
+ "version": 0.4
733
+ }
ComfyUI/custom_nodes/layerdiffuse/examples/layer_diffusion_fg_example_rgba.json ADDED
@@ -0,0 +1,511 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "last_node_id": 36,
3
+ "last_link_id": 51,
4
+ "nodes": [
5
+ {
6
+ "id": 7,
7
+ "type": "CLIPTextEncode",
8
+ "pos": [
9
+ 413,
10
+ 389
11
+ ],
12
+ "size": {
13
+ "0": 425.27801513671875,
14
+ "1": 180.6060791015625
15
+ },
16
+ "flags": {},
17
+ "order": 4,
18
+ "mode": 0,
19
+ "inputs": [
20
+ {
21
+ "name": "clip",
22
+ "type": "CLIP",
23
+ "link": 5
24
+ }
25
+ ],
26
+ "outputs": [
27
+ {
28
+ "name": "CONDITIONING",
29
+ "type": "CONDITIONING",
30
+ "links": [
31
+ 6
32
+ ],
33
+ "slot_index": 0
34
+ }
35
+ ],
36
+ "properties": {
37
+ "Node name for S&R": "CLIPTextEncode"
38
+ },
39
+ "widgets_values": [
40
+ "text, watermark"
41
+ ]
42
+ },
43
+ {
44
+ "id": 6,
45
+ "type": "CLIPTextEncode",
46
+ "pos": [
47
+ 415,
48
+ 186
49
+ ],
50
+ "size": {
51
+ "0": 422.84503173828125,
52
+ "1": 164.31304931640625
53
+ },
54
+ "flags": {},
55
+ "order": 3,
56
+ "mode": 0,
57
+ "inputs": [
58
+ {
59
+ "name": "clip",
60
+ "type": "CLIP",
61
+ "link": 3
62
+ }
63
+ ],
64
+ "outputs": [
65
+ {
66
+ "name": "CONDITIONING",
67
+ "type": "CONDITIONING",
68
+ "links": [
69
+ 4
70
+ ],
71
+ "slot_index": 0
72
+ }
73
+ ],
74
+ "properties": {
75
+ "Node name for S&R": "CLIPTextEncode"
76
+ },
77
+ "widgets_values": [
78
+ "beautiful scenery nature glass bottle landscape, , purple galaxy bottle,"
79
+ ]
80
+ },
81
+ {
82
+ "id": 4,
83
+ "type": "CheckpointLoaderSimple",
84
+ "pos": [
85
+ 5,
86
+ 479
87
+ ],
88
+ "size": {
89
+ "0": 315,
90
+ "1": 98
91
+ },
92
+ "flags": {},
93
+ "order": 0,
94
+ "mode": 0,
95
+ "outputs": [
96
+ {
97
+ "name": "MODEL",
98
+ "type": "MODEL",
99
+ "links": [
100
+ 18
101
+ ],
102
+ "slot_index": 0
103
+ },
104
+ {
105
+ "name": "CLIP",
106
+ "type": "CLIP",
107
+ "links": [
108
+ 3,
109
+ 5
110
+ ],
111
+ "slot_index": 1
112
+ },
113
+ {
114
+ "name": "VAE",
115
+ "type": "VAE",
116
+ "links": [
117
+ 22
118
+ ],
119
+ "slot_index": 2
120
+ }
121
+ ],
122
+ "properties": {
123
+ "Node name for S&R": "CheckpointLoaderSimple"
124
+ },
125
+ "widgets_values": [
126
+ "juggernautXL_v8Rundiffusion.safetensors"
127
+ ]
128
+ },
129
+ {
130
+ "id": 14,
131
+ "type": "VAEDecode",
132
+ "pos": [
133
+ 1275,
134
+ 198
135
+ ],
136
+ "size": {
137
+ "0": 210,
138
+ "1": 46
139
+ },
140
+ "flags": {},
141
+ "order": 6,
142
+ "mode": 0,
143
+ "inputs": [
144
+ {
145
+ "name": "samples",
146
+ "type": "LATENT",
147
+ "link": 21
148
+ },
149
+ {
150
+ "name": "vae",
151
+ "type": "VAE",
152
+ "link": 22,
153
+ "slot_index": 1
154
+ }
155
+ ],
156
+ "outputs": [
157
+ {
158
+ "name": "IMAGE",
159
+ "type": "IMAGE",
160
+ "links": [
161
+ 29,
162
+ 50
163
+ ],
164
+ "shape": 3,
165
+ "slot_index": 0
166
+ }
167
+ ],
168
+ "properties": {
169
+ "Node name for S&R": "VAEDecode"
170
+ }
171
+ },
172
+ {
173
+ "id": 3,
174
+ "type": "KSampler",
175
+ "pos": [
176
+ 911,
177
+ 198
178
+ ],
179
+ "size": {
180
+ "0": 315,
181
+ "1": 262
182
+ },
183
+ "flags": {},
184
+ "order": 5,
185
+ "mode": 0,
186
+ "inputs": [
187
+ {
188
+ "name": "model",
189
+ "type": "MODEL",
190
+ "link": 19
191
+ },
192
+ {
193
+ "name": "positive",
194
+ "type": "CONDITIONING",
195
+ "link": 4
196
+ },
197
+ {
198
+ "name": "negative",
199
+ "type": "CONDITIONING",
200
+ "link": 6
201
+ },
202
+ {
203
+ "name": "latent_image",
204
+ "type": "LATENT",
205
+ "link": 2
206
+ }
207
+ ],
208
+ "outputs": [
209
+ {
210
+ "name": "LATENT",
211
+ "type": "LATENT",
212
+ "links": [
213
+ 21,
214
+ 49
215
+ ],
216
+ "slot_index": 0
217
+ }
218
+ ],
219
+ "properties": {
220
+ "Node name for S&R": "KSampler"
221
+ },
222
+ "widgets_values": [
223
+ 1029477926308287,
224
+ "randomize",
225
+ 20,
226
+ 8,
227
+ "euler",
228
+ "normal",
229
+ 1
230
+ ]
231
+ },
232
+ {
233
+ "id": 5,
234
+ "type": "EmptyLatentImage",
235
+ "pos": [
236
+ 480,
237
+ 691
238
+ ],
239
+ "size": {
240
+ "0": 315,
241
+ "1": 106
242
+ },
243
+ "flags": {},
244
+ "order": 1,
245
+ "mode": 0,
246
+ "outputs": [
247
+ {
248
+ "name": "LATENT",
249
+ "type": "LATENT",
250
+ "links": [
251
+ 2
252
+ ],
253
+ "slot_index": 0
254
+ }
255
+ ],
256
+ "properties": {
257
+ "Node name for S&R": "EmptyLatentImage"
258
+ },
259
+ "widgets_values": [
260
+ 1024,
261
+ 1024,
262
+ 1
263
+ ]
264
+ },
265
+ {
266
+ "id": 36,
267
+ "type": "LayeredDiffusionDecodeRGBA",
268
+ "pos": [
269
+ 1589,
270
+ 199
271
+ ],
272
+ "size": {
273
+ "0": 243.60000610351562,
274
+ "1": 102
275
+ },
276
+ "flags": {},
277
+ "order": 8,
278
+ "mode": 0,
279
+ "inputs": [
280
+ {
281
+ "name": "samples",
282
+ "type": "LATENT",
283
+ "link": 49
284
+ },
285
+ {
286
+ "name": "images",
287
+ "type": "IMAGE",
288
+ "link": 50
289
+ }
290
+ ],
291
+ "outputs": [
292
+ {
293
+ "name": "IMAGE",
294
+ "type": "IMAGE",
295
+ "links": [
296
+ 51
297
+ ],
298
+ "shape": 3
299
+ }
300
+ ],
301
+ "properties": {
302
+ "Node name for S&R": "LayeredDiffusionDecodeRGBA"
303
+ },
304
+ "widgets_values": [
305
+ "SDXL",
306
+ 16
307
+ ]
308
+ },
309
+ {
310
+ "id": 27,
311
+ "type": "PreviewImage",
312
+ "pos": [
313
+ 1930,
314
+ 197
315
+ ],
316
+ "size": {
317
+ "0": 289.6058349609375,
318
+ "1": 299.6588134765625
319
+ },
320
+ "flags": {},
321
+ "order": 9,
322
+ "mode": 0,
323
+ "inputs": [
324
+ {
325
+ "name": "images",
326
+ "type": "IMAGE",
327
+ "link": 51,
328
+ "slot_index": 0
329
+ }
330
+ ],
331
+ "properties": {
332
+ "Node name for S&R": "PreviewImage"
333
+ }
334
+ },
335
+ {
336
+ "id": 20,
337
+ "type": "PreviewImage",
338
+ "pos": [
339
+ 1570,
340
+ 365
341
+ ],
342
+ "size": {
343
+ "0": 289.6058349609375,
344
+ "1": 299.6588134765625
345
+ },
346
+ "flags": {},
347
+ "order": 7,
348
+ "mode": 0,
349
+ "inputs": [
350
+ {
351
+ "name": "images",
352
+ "type": "IMAGE",
353
+ "link": 29
354
+ }
355
+ ],
356
+ "properties": {
357
+ "Node name for S&R": "PreviewImage"
358
+ }
359
+ },
360
+ {
361
+ "id": 13,
362
+ "type": "LayeredDiffusionApply",
363
+ "pos": [
364
+ 468,
365
+ -2
366
+ ],
367
+ "size": {
368
+ "0": 327.8314208984375,
369
+ "1": 106.42147827148438
370
+ },
371
+ "flags": {},
372
+ "order": 2,
373
+ "mode": 0,
374
+ "inputs": [
375
+ {
376
+ "name": "model",
377
+ "type": "MODEL",
378
+ "link": 18
379
+ }
380
+ ],
381
+ "outputs": [
382
+ {
383
+ "name": "MODEL",
384
+ "type": "MODEL",
385
+ "links": [
386
+ 19
387
+ ],
388
+ "shape": 3,
389
+ "slot_index": 0
390
+ }
391
+ ],
392
+ "properties": {
393
+ "Node name for S&R": "LayeredDiffusionApply"
394
+ },
395
+ "widgets_values": [
396
+ "SDXL, Conv Injection",
397
+ 1
398
+ ]
399
+ }
400
+ ],
401
+ "links": [
402
+ [
403
+ 2,
404
+ 5,
405
+ 0,
406
+ 3,
407
+ 3,
408
+ "LATENT"
409
+ ],
410
+ [
411
+ 3,
412
+ 4,
413
+ 1,
414
+ 6,
415
+ 0,
416
+ "CLIP"
417
+ ],
418
+ [
419
+ 4,
420
+ 6,
421
+ 0,
422
+ 3,
423
+ 1,
424
+ "CONDITIONING"
425
+ ],
426
+ [
427
+ 5,
428
+ 4,
429
+ 1,
430
+ 7,
431
+ 0,
432
+ "CLIP"
433
+ ],
434
+ [
435
+ 6,
436
+ 7,
437
+ 0,
438
+ 3,
439
+ 2,
440
+ "CONDITIONING"
441
+ ],
442
+ [
443
+ 18,
444
+ 4,
445
+ 0,
446
+ 13,
447
+ 0,
448
+ "MODEL"
449
+ ],
450
+ [
451
+ 19,
452
+ 13,
453
+ 0,
454
+ 3,
455
+ 0,
456
+ "MODEL"
457
+ ],
458
+ [
459
+ 21,
460
+ 3,
461
+ 0,
462
+ 14,
463
+ 0,
464
+ "LATENT"
465
+ ],
466
+ [
467
+ 22,
468
+ 4,
469
+ 2,
470
+ 14,
471
+ 1,
472
+ "VAE"
473
+ ],
474
+ [
475
+ 29,
476
+ 14,
477
+ 0,
478
+ 20,
479
+ 0,
480
+ "IMAGE"
481
+ ],
482
+ [
483
+ 49,
484
+ 3,
485
+ 0,
486
+ 36,
487
+ 0,
488
+ "LATENT"
489
+ ],
490
+ [
491
+ 50,
492
+ 14,
493
+ 0,
494
+ 36,
495
+ 1,
496
+ "IMAGE"
497
+ ],
498
+ [
499
+ 51,
500
+ 36,
501
+ 0,
502
+ 27,
503
+ 0,
504
+ "IMAGE"
505
+ ]
506
+ ],
507
+ "groups": [],
508
+ "config": {},
509
+ "extra": {},
510
+ "version": 0.4
511
+ }
ComfyUI/custom_nodes/layerdiffuse/examples/layer_diffusion_joint.json ADDED
@@ -0,0 +1,703 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "last_node_id": 27,
3
+ "last_link_id": 42,
4
+ "nodes": [
5
+ {
6
+ "id": 7,
7
+ "type": "CLIPTextEncode",
8
+ "pos": [
9
+ 413,
10
+ 389
11
+ ],
12
+ "size": {
13
+ "0": 425.27801513671875,
14
+ "1": 180.6060791015625
15
+ },
16
+ "flags": {},
17
+ "order": 3,
18
+ "mode": 0,
19
+ "inputs": [
20
+ {
21
+ "name": "clip",
22
+ "type": "CLIP",
23
+ "link": 5
24
+ }
25
+ ],
26
+ "outputs": [
27
+ {
28
+ "name": "CONDITIONING",
29
+ "type": "CONDITIONING",
30
+ "links": [
31
+ 6
32
+ ],
33
+ "slot_index": 0
34
+ }
35
+ ],
36
+ "properties": {
37
+ "Node name for S&R": "CLIPTextEncode"
38
+ },
39
+ "widgets_values": [
40
+ "text, watermark"
41
+ ]
42
+ },
43
+ {
44
+ "id": 3,
45
+ "type": "KSampler",
46
+ "pos": [
47
+ 891,
48
+ 192
49
+ ],
50
+ "size": {
51
+ "0": 315,
52
+ "1": 262
53
+ },
54
+ "flags": {},
55
+ "order": 7,
56
+ "mode": 0,
57
+ "inputs": [
58
+ {
59
+ "name": "model",
60
+ "type": "MODEL",
61
+ "link": 32
62
+ },
63
+ {
64
+ "name": "positive",
65
+ "type": "CONDITIONING",
66
+ "link": 4
67
+ },
68
+ {
69
+ "name": "negative",
70
+ "type": "CONDITIONING",
71
+ "link": 6
72
+ },
73
+ {
74
+ "name": "latent_image",
75
+ "type": "LATENT",
76
+ "link": 2
77
+ }
78
+ ],
79
+ "outputs": [
80
+ {
81
+ "name": "LATENT",
82
+ "type": "LATENT",
83
+ "links": [
84
+ 21,
85
+ 33
86
+ ],
87
+ "slot_index": 0
88
+ }
89
+ ],
90
+ "properties": {
91
+ "Node name for S&R": "KSampler"
92
+ },
93
+ "widgets_values": [
94
+ 960762378448318,
95
+ "randomize",
96
+ 20,
97
+ 8,
98
+ "euler",
99
+ "normal",
100
+ 1
101
+ ]
102
+ },
103
+ {
104
+ "id": 14,
105
+ "type": "VAEDecode",
106
+ "pos": [
107
+ 1275,
108
+ 198
109
+ ],
110
+ "size": {
111
+ "0": 210,
112
+ "1": 46
113
+ },
114
+ "flags": {},
115
+ "order": 8,
116
+ "mode": 0,
117
+ "inputs": [
118
+ {
119
+ "name": "samples",
120
+ "type": "LATENT",
121
+ "link": 21
122
+ },
123
+ {
124
+ "name": "vae",
125
+ "type": "VAE",
126
+ "link": 22,
127
+ "slot_index": 1
128
+ }
129
+ ],
130
+ "outputs": [
131
+ {
132
+ "name": "IMAGE",
133
+ "type": "IMAGE",
134
+ "links": [
135
+ 34
136
+ ],
137
+ "shape": 3,
138
+ "slot_index": 0
139
+ }
140
+ ],
141
+ "properties": {
142
+ "Node name for S&R": "VAEDecode"
143
+ }
144
+ },
145
+ {
146
+ "id": 4,
147
+ "type": "CheckpointLoaderSimple",
148
+ "pos": [
149
+ 5,
150
+ 479
151
+ ],
152
+ "size": {
153
+ "0": 315,
154
+ "1": 98
155
+ },
156
+ "flags": {},
157
+ "order": 0,
158
+ "mode": 0,
159
+ "outputs": [
160
+ {
161
+ "name": "MODEL",
162
+ "type": "MODEL",
163
+ "links": [
164
+ 31
165
+ ],
166
+ "slot_index": 0
167
+ },
168
+ {
169
+ "name": "CLIP",
170
+ "type": "CLIP",
171
+ "links": [
172
+ 3,
173
+ 5,
174
+ 41,
175
+ 42
176
+ ],
177
+ "slot_index": 1
178
+ },
179
+ {
180
+ "name": "VAE",
181
+ "type": "VAE",
182
+ "links": [
183
+ 22
184
+ ],
185
+ "slot_index": 2
186
+ }
187
+ ],
188
+ "properties": {
189
+ "Node name for S&R": "CheckpointLoaderSimple"
190
+ },
191
+ "widgets_values": [
192
+ "realisticVisionV20_v20.safetensors"
193
+ ]
194
+ },
195
+ {
196
+ "id": 27,
197
+ "type": "CLIPTextEncode",
198
+ "pos": [
199
+ -20,
200
+ -20
201
+ ],
202
+ "size": {
203
+ "0": 422.84503173828125,
204
+ "1": 164.31304931640625
205
+ },
206
+ "flags": {},
207
+ "order": 5,
208
+ "mode": 0,
209
+ "inputs": [
210
+ {
211
+ "name": "clip",
212
+ "type": "CLIP",
213
+ "link": 42,
214
+ "slot_index": 0
215
+ }
216
+ ],
217
+ "outputs": [
218
+ {
219
+ "name": "CONDITIONING",
220
+ "type": "CONDITIONING",
221
+ "links": [
222
+ 40
223
+ ],
224
+ "slot_index": 0
225
+ }
226
+ ],
227
+ "properties": {
228
+ "Node name for S&R": "CLIPTextEncode"
229
+ },
230
+ "widgets_values": [
231
+ "a cozy room"
232
+ ]
233
+ },
234
+ {
235
+ "id": 21,
236
+ "type": "LayeredDiffusionJointApply",
237
+ "pos": [
238
+ 469,
239
+ -9
240
+ ],
241
+ "size": {
242
+ "0": 315,
243
+ "1": 118
244
+ },
245
+ "flags": {},
246
+ "order": 6,
247
+ "mode": 0,
248
+ "inputs": [
249
+ {
250
+ "name": "model",
251
+ "type": "MODEL",
252
+ "link": 31,
253
+ "slot_index": 0
254
+ },
255
+ {
256
+ "name": "fg_cond",
257
+ "type": "CONDITIONING",
258
+ "link": 39
259
+ },
260
+ {
261
+ "name": "bg_cond",
262
+ "type": "CONDITIONING",
263
+ "link": 40
264
+ },
265
+ {
266
+ "name": "blended_cond",
267
+ "type": "CONDITIONING",
268
+ "link": 38
269
+ }
270
+ ],
271
+ "outputs": [
272
+ {
273
+ "name": "MODEL",
274
+ "type": "MODEL",
275
+ "links": [
276
+ 32
277
+ ],
278
+ "shape": 3,
279
+ "slot_index": 0
280
+ }
281
+ ],
282
+ "properties": {
283
+ "Node name for S&R": "LayeredDiffusionJointApply"
284
+ },
285
+ "widgets_values": [
286
+ "SD15, attn_sharing, Batch size (3N)"
287
+ ],
288
+ "color": "#232",
289
+ "bgcolor": "#353"
290
+ },
291
+ {
292
+ "id": 22,
293
+ "type": "LayeredDiffusionDecodeSplit",
294
+ "pos": [
295
+ 1534,
296
+ 193
297
+ ],
298
+ "size": {
299
+ "0": 315,
300
+ "1": 146
301
+ },
302
+ "flags": {},
303
+ "order": 9,
304
+ "mode": 0,
305
+ "inputs": [
306
+ {
307
+ "name": "samples",
308
+ "type": "LATENT",
309
+ "link": 33,
310
+ "slot_index": 0
311
+ },
312
+ {
313
+ "name": "images",
314
+ "type": "IMAGE",
315
+ "link": 34
316
+ }
317
+ ],
318
+ "outputs": [
319
+ {
320
+ "name": "IMAGE",
321
+ "type": "IMAGE",
322
+ "links": [
323
+ 35
324
+ ],
325
+ "shape": 3,
326
+ "slot_index": 0
327
+ },
328
+ {
329
+ "name": "IMAGE",
330
+ "type": "IMAGE",
331
+ "links": [
332
+ 36
333
+ ],
334
+ "shape": 3,
335
+ "slot_index": 1
336
+ },
337
+ {
338
+ "name": "IMAGE",
339
+ "type": "IMAGE",
340
+ "links": [
341
+ 37
342
+ ],
343
+ "shape": 3,
344
+ "slot_index": 2
345
+ }
346
+ ],
347
+ "properties": {
348
+ "Node name for S&R": "LayeredDiffusionDecodeSplit"
349
+ },
350
+ "widgets_values": [
351
+ 3,
352
+ "SD15",
353
+ 16
354
+ ],
355
+ "color": "#232",
356
+ "bgcolor": "#353"
357
+ },
358
+ {
359
+ "id": 5,
360
+ "type": "EmptyLatentImage",
361
+ "pos": [
362
+ 466,
363
+ 645
364
+ ],
365
+ "size": {
366
+ "0": 315,
367
+ "1": 106
368
+ },
369
+ "flags": {},
370
+ "order": 1,
371
+ "mode": 0,
372
+ "outputs": [
373
+ {
374
+ "name": "LATENT",
375
+ "type": "LATENT",
376
+ "links": [
377
+ 2
378
+ ],
379
+ "slot_index": 0
380
+ }
381
+ ],
382
+ "properties": {
383
+ "Node name for S&R": "EmptyLatentImage"
384
+ },
385
+ "widgets_values": [
386
+ 512,
387
+ 512,
388
+ 6
389
+ ]
390
+ },
391
+ {
392
+ "id": 26,
393
+ "type": "CLIPTextEncode",
394
+ "pos": [
395
+ -20,
396
+ -235
397
+ ],
398
+ "size": {
399
+ "0": 422.84503173828125,
400
+ "1": 164.31304931640625
401
+ },
402
+ "flags": {},
403
+ "order": 4,
404
+ "mode": 0,
405
+ "inputs": [
406
+ {
407
+ "name": "clip",
408
+ "type": "CLIP",
409
+ "link": 41,
410
+ "slot_index": 0
411
+ }
412
+ ],
413
+ "outputs": [
414
+ {
415
+ "name": "CONDITIONING",
416
+ "type": "CONDITIONING",
417
+ "links": [
418
+ 39
419
+ ],
420
+ "slot_index": 0
421
+ }
422
+ ],
423
+ "properties": {
424
+ "Node name for S&R": "CLIPTextEncode"
425
+ },
426
+ "widgets_values": [
427
+ "a sitting dog"
428
+ ]
429
+ },
430
+ {
431
+ "id": 6,
432
+ "type": "CLIPTextEncode",
433
+ "pos": [
434
+ 413,
435
+ 172
436
+ ],
437
+ "size": {
438
+ "0": 422.84503173828125,
439
+ "1": 164.31304931640625
440
+ },
441
+ "flags": {},
442
+ "order": 2,
443
+ "mode": 0,
444
+ "inputs": [
445
+ {
446
+ "name": "clip",
447
+ "type": "CLIP",
448
+ "link": 3
449
+ }
450
+ ],
451
+ "outputs": [
452
+ {
453
+ "name": "CONDITIONING",
454
+ "type": "CONDITIONING",
455
+ "links": [
456
+ 4,
457
+ 38
458
+ ],
459
+ "slot_index": 0
460
+ }
461
+ ],
462
+ "properties": {
463
+ "Node name for S&R": "CLIPTextEncode"
464
+ },
465
+ "widgets_values": [
466
+ "A dog sitting in a cozy room"
467
+ ]
468
+ },
469
+ {
470
+ "id": 23,
471
+ "type": "PreviewImage",
472
+ "pos": [
473
+ 1931,
474
+ -98
475
+ ],
476
+ "size": [
477
+ 522.1710021972658,
478
+ 259.90739746093755
479
+ ],
480
+ "flags": {},
481
+ "order": 10,
482
+ "mode": 0,
483
+ "inputs": [
484
+ {
485
+ "name": "images",
486
+ "type": "IMAGE",
487
+ "link": 35
488
+ }
489
+ ],
490
+ "properties": {
491
+ "Node name for S&R": "PreviewImage"
492
+ }
493
+ },
494
+ {
495
+ "id": 24,
496
+ "type": "PreviewImage",
497
+ "pos": [
498
+ 1933,
499
+ 222
500
+ ],
501
+ "size": [
502
+ 517.9710037231448,
503
+ 258.9074523925782
504
+ ],
505
+ "flags": {},
506
+ "order": 11,
507
+ "mode": 0,
508
+ "inputs": [
509
+ {
510
+ "name": "images",
511
+ "type": "IMAGE",
512
+ "link": 36
513
+ }
514
+ ],
515
+ "properties": {
516
+ "Node name for S&R": "PreviewImage"
517
+ }
518
+ },
519
+ {
520
+ "id": 25,
521
+ "type": "PreviewImage",
522
+ "pos": [
523
+ 1933,
524
+ 536
525
+ ],
526
+ "size": [
527
+ 516.8710037231444,
528
+ 270.5074523925782
529
+ ],
530
+ "flags": {},
531
+ "order": 12,
532
+ "mode": 0,
533
+ "inputs": [
534
+ {
535
+ "name": "images",
536
+ "type": "IMAGE",
537
+ "link": 37
538
+ }
539
+ ],
540
+ "properties": {
541
+ "Node name for S&R": "PreviewImage"
542
+ }
543
+ }
544
+ ],
545
+ "links": [
546
+ [
547
+ 2,
548
+ 5,
549
+ 0,
550
+ 3,
551
+ 3,
552
+ "LATENT"
553
+ ],
554
+ [
555
+ 3,
556
+ 4,
557
+ 1,
558
+ 6,
559
+ 0,
560
+ "CLIP"
561
+ ],
562
+ [
563
+ 4,
564
+ 6,
565
+ 0,
566
+ 3,
567
+ 1,
568
+ "CONDITIONING"
569
+ ],
570
+ [
571
+ 5,
572
+ 4,
573
+ 1,
574
+ 7,
575
+ 0,
576
+ "CLIP"
577
+ ],
578
+ [
579
+ 6,
580
+ 7,
581
+ 0,
582
+ 3,
583
+ 2,
584
+ "CONDITIONING"
585
+ ],
586
+ [
587
+ 21,
588
+ 3,
589
+ 0,
590
+ 14,
591
+ 0,
592
+ "LATENT"
593
+ ],
594
+ [
595
+ 22,
596
+ 4,
597
+ 2,
598
+ 14,
599
+ 1,
600
+ "VAE"
601
+ ],
602
+ [
603
+ 31,
604
+ 4,
605
+ 0,
606
+ 21,
607
+ 0,
608
+ "MODEL"
609
+ ],
610
+ [
611
+ 32,
612
+ 21,
613
+ 0,
614
+ 3,
615
+ 0,
616
+ "MODEL"
617
+ ],
618
+ [
619
+ 33,
620
+ 3,
621
+ 0,
622
+ 22,
623
+ 0,
624
+ "LATENT"
625
+ ],
626
+ [
627
+ 34,
628
+ 14,
629
+ 0,
630
+ 22,
631
+ 1,
632
+ "IMAGE"
633
+ ],
634
+ [
635
+ 35,
636
+ 22,
637
+ 0,
638
+ 23,
639
+ 0,
640
+ "IMAGE"
641
+ ],
642
+ [
643
+ 36,
644
+ 22,
645
+ 1,
646
+ 24,
647
+ 0,
648
+ "IMAGE"
649
+ ],
650
+ [
651
+ 37,
652
+ 22,
653
+ 2,
654
+ 25,
655
+ 0,
656
+ "IMAGE"
657
+ ],
658
+ [
659
+ 38,
660
+ 6,
661
+ 0,
662
+ 21,
663
+ 3,
664
+ "CONDITIONING"
665
+ ],
666
+ [
667
+ 39,
668
+ 26,
669
+ 0,
670
+ 21,
671
+ 1,
672
+ "CONDITIONING"
673
+ ],
674
+ [
675
+ 40,
676
+ 27,
677
+ 0,
678
+ 21,
679
+ 2,
680
+ "CONDITIONING"
681
+ ],
682
+ [
683
+ 41,
684
+ 4,
685
+ 1,
686
+ 26,
687
+ 0,
688
+ "CLIP"
689
+ ],
690
+ [
691
+ 42,
692
+ 4,
693
+ 1,
694
+ 27,
695
+ 0,
696
+ "CLIP"
697
+ ]
698
+ ],
699
+ "groups": [],
700
+ "config": {},
701
+ "extra": {},
702
+ "version": 0.4
703
+ }
ComfyUI/custom_nodes/layerdiffuse/layered_diffusion.py ADDED
@@ -0,0 +1,683 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from enum import Enum
3
+ import torch
4
+ import functools
5
+ import copy
6
+ from typing import Optional, List
7
+ from dataclasses import dataclass
8
+
9
+ import folder_paths
10
+ import comfy.model_management
11
+ import comfy.model_base
12
+ import comfy.supported_models
13
+ import comfy.supported_models_base
14
+ from comfy.model_patcher import ModelPatcher
15
+ from folder_paths import get_folder_paths
16
+ from comfy.utils import load_torch_file
17
+ from comfy_extras.nodes_compositing import JoinImageWithAlpha
18
+ from comfy.conds import CONDRegular
19
+ from .lib_layerdiffusion.utils import (
20
+ load_file_from_url,
21
+ to_lora_patch_dict,
22
+ )
23
+ from .lib_layerdiffusion.models import TransparentVAEDecoder
24
+ from .lib_layerdiffusion.attention_sharing import AttentionSharingPatcher
25
+ from .lib_layerdiffusion.enums import StableDiffusionVersion
26
+
27
+ if "layer_model" in folder_paths.folder_names_and_paths:
28
+ layer_model_root = get_folder_paths("layer_model")[0]
29
+ else:
30
+ layer_model_root = os.path.join(folder_paths.models_dir, "layer_model")
31
+ load_layer_model_state_dict = load_torch_file
32
+
33
+
34
+ # ------------ Start patching ComfyUI ------------
35
+ def calculate_weight_adjust_channel(func):
36
+ """Patches ComfyUI's LoRA weight application to accept multi-channel inputs."""
37
+
38
+ @functools.wraps(func)
39
+ def calculate_weight(
40
+ self: ModelPatcher, patches, weight: torch.Tensor, key: str
41
+ ) -> torch.Tensor:
42
+ weight = func(self, patches, weight, key)
43
+
44
+ for p in patches:
45
+ alpha = p[0]
46
+ v = p[1]
47
+
48
+ # The recursion call should be handled in the main func call.
49
+ if isinstance(v, list):
50
+ continue
51
+
52
+ if len(v) == 1:
53
+ patch_type = "diff"
54
+ elif len(v) == 2:
55
+ patch_type = v[0]
56
+ v = v[1]
57
+
58
+ if patch_type == "diff":
59
+ w1 = v[0]
60
+ if all(
61
+ (
62
+ alpha != 0.0,
63
+ w1.shape != weight.shape,
64
+ w1.ndim == weight.ndim == 4,
65
+ )
66
+ ):
67
+ new_shape = [max(n, m) for n, m in zip(weight.shape, w1.shape)]
68
+ print(
69
+ f"Merged with {key} channel changed from {weight.shape} to {new_shape}"
70
+ )
71
+ new_diff = alpha * comfy.model_management.cast_to_device(
72
+ w1, weight.device, weight.dtype
73
+ )
74
+ new_weight = torch.zeros(size=new_shape).to(weight)
75
+ new_weight[
76
+ : weight.shape[0],
77
+ : weight.shape[1],
78
+ : weight.shape[2],
79
+ : weight.shape[3],
80
+ ] = weight
81
+ new_weight[
82
+ : new_diff.shape[0],
83
+ : new_diff.shape[1],
84
+ : new_diff.shape[2],
85
+ : new_diff.shape[3],
86
+ ] += new_diff
87
+ new_weight = new_weight.contiguous().clone()
88
+ weight = new_weight
89
+ return weight
90
+
91
+ return calculate_weight
92
+
93
+
94
+ ModelPatcher.calculate_weight = calculate_weight_adjust_channel(
95
+ ModelPatcher.calculate_weight
96
+ )
97
+
98
+ # ------------ End patching ComfyUI ------------
99
+
100
+
101
+ class LayeredDiffusionDecode:
102
+ """
103
+ Decode alpha channel value from pixel value.
104
+ [B, C=3, H, W] => [B, C=4, H, W]
105
+ Outputs RGB image + Alpha mask.
106
+ """
107
+
108
+ @classmethod
109
+ def INPUT_TYPES(s):
110
+ return {
111
+ "required": {
112
+ "samples": ("LATENT",),
113
+ "images": ("IMAGE",),
114
+ "sd_version": (
115
+ [
116
+ StableDiffusionVersion.SD1x.value,
117
+ StableDiffusionVersion.SDXL.value,
118
+ ],
119
+ {
120
+ "default": StableDiffusionVersion.SDXL.value,
121
+ },
122
+ ),
123
+ "sub_batch_size": (
124
+ "INT",
125
+ {"default": 16, "min": 1, "max": 4096, "step": 1},
126
+ ),
127
+ },
128
+ }
129
+
130
+ RETURN_TYPES = ("IMAGE", "MASK")
131
+ FUNCTION = "decode"
132
+ CATEGORY = "layer_diffuse"
133
+
134
+ def __init__(self) -> None:
135
+ self.vae_transparent_decoder = {}
136
+
137
+ def decode(self, samples, images, sd_version: str, sub_batch_size: int):
138
+ """
139
+ sub_batch_size: How many images to decode in a single pass.
140
+ See https://github.com/huchenlei/ComfyUI-layerdiffuse/pull/4 for more
141
+ context.
142
+ """
143
+ sd_version = StableDiffusionVersion(sd_version)
144
+ if sd_version == StableDiffusionVersion.SD1x:
145
+ url = "https://huggingface.co/LayerDiffusion/layerdiffusion-v1/resolve/main/layer_sd15_vae_transparent_decoder.safetensors"
146
+ file_name = "layer_sd15_vae_transparent_decoder.safetensors"
147
+ elif sd_version == StableDiffusionVersion.SDXL:
148
+ url = "https://huggingface.co/LayerDiffusion/layerdiffusion-v1/resolve/main/vae_transparent_decoder.safetensors"
149
+ file_name = "vae_transparent_decoder.safetensors"
150
+
151
+ if not self.vae_transparent_decoder.get(sd_version):
152
+ model_path = load_file_from_url(
153
+ url=url, model_dir=layer_model_root, file_name=file_name
154
+ )
155
+ self.vae_transparent_decoder[sd_version] = TransparentVAEDecoder(
156
+ load_torch_file(model_path),
157
+ device=comfy.model_management.get_torch_device(),
158
+ dtype=(
159
+ torch.float16
160
+ if comfy.model_management.should_use_fp16()
161
+ else torch.float32
162
+ ),
163
+ )
164
+ pixel = images.movedim(-1, 1) # [B, H, W, C] => [B, C, H, W]
165
+
166
+ # Decoder requires dimension to be 64-aligned.
167
+ B, C, H, W = pixel.shape
168
+ assert H % 64 == 0, f"Height({H}) is not multiple of 64."
169
+ assert W % 64 == 0, f"Height({W}) is not multiple of 64."
170
+
171
+ decoded = []
172
+ for start_idx in range(0, samples["samples"].shape[0], sub_batch_size):
173
+ decoded.append(
174
+ self.vae_transparent_decoder[sd_version].decode_pixel(
175
+ pixel[start_idx : start_idx + sub_batch_size],
176
+ samples["samples"][start_idx : start_idx + sub_batch_size],
177
+ )
178
+ )
179
+ pixel_with_alpha = torch.cat(decoded, dim=0)
180
+
181
+ # [B, C, H, W] => [B, H, W, C]
182
+ pixel_with_alpha = pixel_with_alpha.movedim(1, -1)
183
+ image = pixel_with_alpha[..., 1:]
184
+ alpha = pixel_with_alpha[..., 0]
185
+ return (image, alpha)
186
+
187
+
188
+ class LayeredDiffusionDecodeRGBA(LayeredDiffusionDecode):
189
+ """
190
+ Decode alpha channel value from pixel value.
191
+ [B, C=3, H, W] => [B, C=4, H, W]
192
+ Outputs RGBA image.
193
+ """
194
+
195
+ RETURN_TYPES = ("IMAGE",)
196
+
197
+ def decode(self, samples, images, sd_version: str, sub_batch_size: int):
198
+ image, mask = super().decode(samples, images, sd_version, sub_batch_size)
199
+ alpha = 1.0 - mask
200
+ return JoinImageWithAlpha().join_image_with_alpha(image, alpha)
201
+
202
+
203
+ class LayeredDiffusionDecodeSplit(LayeredDiffusionDecodeRGBA):
204
+ """Decode RGBA every N images."""
205
+
206
+ @classmethod
207
+ def INPUT_TYPES(s):
208
+ return {
209
+ "required": {
210
+ "samples": ("LATENT",),
211
+ "images": ("IMAGE",),
212
+ # Do RGBA decode every N output images.
213
+ "frames": (
214
+ "INT",
215
+ {"default": 2, "min": 2, "max": s.MAX_FRAMES, "step": 1},
216
+ ),
217
+ "sd_version": (
218
+ [
219
+ StableDiffusionVersion.SD1x.value,
220
+ StableDiffusionVersion.SDXL.value,
221
+ ],
222
+ {
223
+ "default": StableDiffusionVersion.SDXL.value,
224
+ },
225
+ ),
226
+ "sub_batch_size": (
227
+ "INT",
228
+ {"default": 16, "min": 1, "max": 4096, "step": 1},
229
+ ),
230
+ },
231
+ }
232
+
233
+ MAX_FRAMES = 3
234
+ RETURN_TYPES = ("IMAGE",) * MAX_FRAMES
235
+
236
+ def decode(
237
+ self,
238
+ samples,
239
+ images: torch.Tensor,
240
+ frames: int,
241
+ sd_version: str,
242
+ sub_batch_size: int,
243
+ ):
244
+ sliced_samples = copy.copy(samples)
245
+ sliced_samples["samples"] = sliced_samples["samples"][::frames]
246
+ return tuple(
247
+ (
248
+ (
249
+ super(LayeredDiffusionDecodeSplit, self).decode(
250
+ sliced_samples, imgs, sd_version, sub_batch_size
251
+ )[0]
252
+ if i == 0
253
+ else imgs
254
+ )
255
+ for i in range(frames)
256
+ for imgs in (images[i::frames],)
257
+ )
258
+ ) + (None,) * (self.MAX_FRAMES - frames)
259
+
260
+
261
+ class LayerMethod(Enum):
262
+ ATTN = "Attention Injection"
263
+ CONV = "Conv Injection"
264
+
265
+
266
+ class LayerType(Enum):
267
+ FG = "Foreground"
268
+ BG = "Background"
269
+
270
+
271
+ @dataclass
272
+ class LayeredDiffusionBase:
273
+ model_file_name: str
274
+ model_url: str
275
+ sd_version: StableDiffusionVersion
276
+ attn_sharing: bool = False
277
+ injection_method: Optional[LayerMethod] = None
278
+ cond_type: Optional[LayerType] = None
279
+ # Number of output images per run.
280
+ frames: int = 1
281
+
282
+ @property
283
+ def config_string(self) -> str:
284
+ injection_method = self.injection_method.value if self.injection_method else ""
285
+ cond_type = self.cond_type.value if self.cond_type else ""
286
+ attn_sharing = "attn_sharing" if self.attn_sharing else ""
287
+ frames = f"Batch size ({self.frames}N)" if self.frames != 1 else ""
288
+ return ", ".join(
289
+ x
290
+ for x in (
291
+ self.sd_version.value,
292
+ injection_method,
293
+ cond_type,
294
+ attn_sharing,
295
+ frames,
296
+ )
297
+ if x
298
+ )
299
+
300
+ def apply_c_concat(self, cond, uncond, c_concat):
301
+ """Set foreground/background concat condition."""
302
+
303
+ def write_c_concat(cond):
304
+ new_cond = []
305
+ for t in cond:
306
+ n = [t[0], t[1].copy()]
307
+ if "model_conds" not in n[1]:
308
+ n[1]["model_conds"] = {}
309
+ n[1]["model_conds"]["c_concat"] = CONDRegular(c_concat)
310
+ new_cond.append(n)
311
+ return new_cond
312
+
313
+ return (write_c_concat(cond), write_c_concat(uncond))
314
+
315
+ def apply_layered_diffusion(
316
+ self,
317
+ model: ModelPatcher,
318
+ weight: float,
319
+ ):
320
+ """Patch model"""
321
+ model_path = load_file_from_url(
322
+ url=self.model_url,
323
+ model_dir=layer_model_root,
324
+ file_name=self.model_file_name,
325
+ )
326
+ layer_lora_state_dict = load_layer_model_state_dict(model_path)
327
+ layer_lora_patch_dict = to_lora_patch_dict(layer_lora_state_dict)
328
+ work_model = model.clone()
329
+ work_model.add_patches(layer_lora_patch_dict, weight)
330
+ return (work_model,)
331
+
332
+ def apply_layered_diffusion_attn_sharing(
333
+ self,
334
+ model: ModelPatcher,
335
+ control_img: Optional[torch.TensorType] = None,
336
+ ):
337
+ """Patch model with attn sharing"""
338
+ model_path = load_file_from_url(
339
+ url=self.model_url,
340
+ model_dir=layer_model_root,
341
+ file_name=self.model_file_name,
342
+ )
343
+ layer_lora_state_dict = load_layer_model_state_dict(model_path)
344
+ work_model = model.clone()
345
+ patcher = AttentionSharingPatcher(
346
+ work_model, self.frames, use_control=control_img is not None
347
+ )
348
+ patcher.load_state_dict(layer_lora_state_dict, strict=True)
349
+ if control_img is not None:
350
+ patcher.set_control(control_img)
351
+ return (work_model,)
352
+
353
+
354
+ def get_model_sd_version(model: ModelPatcher) -> StableDiffusionVersion:
355
+ """Get model's StableDiffusionVersion."""
356
+ base: comfy.model_base.BaseModel = model.model
357
+ model_config: comfy.supported_models.supported_models_base.BASE = base.model_config
358
+ if isinstance(model_config, comfy.supported_models.SDXL):
359
+ return StableDiffusionVersion.SDXL
360
+ elif isinstance(
361
+ model_config, (comfy.supported_models.SD15, comfy.supported_models.SD20)
362
+ ):
363
+ # SD15 and SD20 are compatible with each other.
364
+ return StableDiffusionVersion.SD1x
365
+ else:
366
+ raise Exception(f"Unsupported SD Version: {type(model_config)}.")
367
+
368
+
369
+ class LayeredDiffusionFG:
370
+ """Generate foreground with transparent background."""
371
+
372
+ @classmethod
373
+ def INPUT_TYPES(s):
374
+ return {
375
+ "required": {
376
+ "model": ("MODEL",),
377
+ "config": ([c.config_string for c in s.MODELS],),
378
+ "weight": (
379
+ "FLOAT",
380
+ {"default": 1.0, "min": -1, "max": 3, "step": 0.05},
381
+ ),
382
+ },
383
+ }
384
+
385
+ RETURN_TYPES = ("MODEL",)
386
+ FUNCTION = "apply_layered_diffusion"
387
+ CATEGORY = "layer_diffuse"
388
+ MODELS = (
389
+ LayeredDiffusionBase(
390
+ model_file_name="layer_xl_transparent_attn.safetensors",
391
+ model_url="https://huggingface.co/LayerDiffusion/layerdiffusion-v1/resolve/main/layer_xl_transparent_attn.safetensors",
392
+ sd_version=StableDiffusionVersion.SDXL,
393
+ injection_method=LayerMethod.ATTN,
394
+ ),
395
+ LayeredDiffusionBase(
396
+ model_file_name="layer_xl_transparent_conv.safetensors",
397
+ model_url="https://huggingface.co/LayerDiffusion/layerdiffusion-v1/resolve/main/layer_xl_transparent_conv.safetensors",
398
+ sd_version=StableDiffusionVersion.SDXL,
399
+ injection_method=LayerMethod.CONV,
400
+ ),
401
+ LayeredDiffusionBase(
402
+ model_file_name="layer_sd15_transparent_attn.safetensors",
403
+ model_url="https://huggingface.co/LayerDiffusion/layerdiffusion-v1/resolve/main/layer_sd15_transparent_attn.safetensors",
404
+ sd_version=StableDiffusionVersion.SD1x,
405
+ injection_method=LayerMethod.ATTN,
406
+ attn_sharing=True,
407
+ ),
408
+ )
409
+
410
+ def apply_layered_diffusion(
411
+ self,
412
+ model: ModelPatcher,
413
+ config: str,
414
+ weight: float,
415
+ ):
416
+ ld_model = [m for m in self.MODELS if m.config_string == config][0]
417
+ assert get_model_sd_version(model) == ld_model.sd_version
418
+ if ld_model.attn_sharing:
419
+ return ld_model.apply_layered_diffusion_attn_sharing(model)
420
+ else:
421
+ return ld_model.apply_layered_diffusion(model, weight)
422
+
423
+
424
+ class LayeredDiffusionJoint:
425
+ """Generate FG + BG + Blended in one inference batch. Batch size = 3N."""
426
+
427
+ @classmethod
428
+ def INPUT_TYPES(s):
429
+ return {
430
+ "required": {
431
+ "model": ("MODEL",),
432
+ "config": ([c.config_string for c in s.MODELS],),
433
+ },
434
+ "optional": {
435
+ "fg_cond": ("CONDITIONING",),
436
+ "bg_cond": ("CONDITIONING",),
437
+ "blended_cond": ("CONDITIONING",),
438
+ },
439
+ }
440
+
441
+ RETURN_TYPES = ("MODEL",)
442
+ FUNCTION = "apply_layered_diffusion"
443
+ CATEGORY = "layer_diffuse"
444
+ MODELS = (
445
+ LayeredDiffusionBase(
446
+ model_file_name="layer_sd15_joint.safetensors",
447
+ model_url="https://huggingface.co/LayerDiffusion/layerdiffusion-v1/resolve/main/layer_sd15_joint.safetensors",
448
+ sd_version=StableDiffusionVersion.SD1x,
449
+ attn_sharing=True,
450
+ frames=3,
451
+ ),
452
+ )
453
+
454
+ def apply_layered_diffusion(
455
+ self,
456
+ model: ModelPatcher,
457
+ config: str,
458
+ fg_cond: Optional[List[List[torch.TensorType]]] = None,
459
+ bg_cond: Optional[List[List[torch.TensorType]]] = None,
460
+ blended_cond: Optional[List[List[torch.TensorType]]] = None,
461
+ ):
462
+ ld_model = [m for m in self.MODELS if m.config_string == config][0]
463
+ assert get_model_sd_version(model) == ld_model.sd_version
464
+ assert ld_model.attn_sharing
465
+ work_model = ld_model.apply_layered_diffusion_attn_sharing(model)[0]
466
+ work_model.model_options.setdefault("transformer_options", {})
467
+ work_model.model_options["transformer_options"]["cond_overwrite"] = [
468
+ cond[0][0] if cond is not None else None
469
+ for cond in (
470
+ fg_cond,
471
+ bg_cond,
472
+ blended_cond,
473
+ )
474
+ ]
475
+ return (work_model,)
476
+
477
+
478
+ class LayeredDiffusionCond:
479
+ """Generate foreground + background given background / foreground.
480
+ - FG => Blended
481
+ - BG => Blended
482
+ """
483
+
484
+ @classmethod
485
+ def INPUT_TYPES(s):
486
+ return {
487
+ "required": {
488
+ "model": ("MODEL",),
489
+ "cond": ("CONDITIONING",),
490
+ "uncond": ("CONDITIONING",),
491
+ "latent": ("LATENT",),
492
+ "config": ([c.config_string for c in s.MODELS],),
493
+ "weight": (
494
+ "FLOAT",
495
+ {"default": 1.0, "min": -1, "max": 3, "step": 0.05},
496
+ ),
497
+ },
498
+ }
499
+
500
+ RETURN_TYPES = ("MODEL", "CONDITIONING", "CONDITIONING")
501
+ FUNCTION = "apply_layered_diffusion"
502
+ CATEGORY = "layer_diffuse"
503
+ MODELS = (
504
+ LayeredDiffusionBase(
505
+ model_file_name="layer_xl_fg2ble.safetensors",
506
+ model_url="https://huggingface.co/LayerDiffusion/layerdiffusion-v1/resolve/main/layer_xl_fg2ble.safetensors",
507
+ sd_version=StableDiffusionVersion.SDXL,
508
+ cond_type=LayerType.FG,
509
+ ),
510
+ LayeredDiffusionBase(
511
+ model_file_name="layer_xl_bg2ble.safetensors",
512
+ model_url="https://huggingface.co/LayerDiffusion/layerdiffusion-v1/resolve/main/layer_xl_bg2ble.safetensors",
513
+ sd_version=StableDiffusionVersion.SDXL,
514
+ cond_type=LayerType.BG,
515
+ ),
516
+ )
517
+
518
+ def apply_layered_diffusion(
519
+ self,
520
+ model: ModelPatcher,
521
+ cond,
522
+ uncond,
523
+ latent,
524
+ config: str,
525
+ weight: float,
526
+ ):
527
+ ld_model = [m for m in self.MODELS if m.config_string == config][0]
528
+ assert get_model_sd_version(model) == ld_model.sd_version
529
+ c_concat = model.model.latent_format.process_in(latent["samples"])
530
+ return ld_model.apply_layered_diffusion(
531
+ model, weight
532
+ ) + ld_model.apply_c_concat(cond, uncond, c_concat)
533
+
534
+
535
+ class LayeredDiffusionCondJoint:
536
+ """Generate fg/bg + blended given fg/bg.
537
+ - FG => Blended + BG
538
+ - BG => Blended + FG
539
+ """
540
+
541
+ @classmethod
542
+ def INPUT_TYPES(s):
543
+ return {
544
+ "required": {
545
+ "model": ("MODEL",),
546
+ "image": ("IMAGE",),
547
+ "config": ([c.config_string for c in s.MODELS],),
548
+ },
549
+ "optional": {
550
+ "cond": ("CONDITIONING",),
551
+ "blended_cond": ("CONDITIONING",),
552
+ },
553
+ }
554
+
555
+ RETURN_TYPES = ("MODEL",)
556
+ FUNCTION = "apply_layered_diffusion"
557
+ CATEGORY = "layer_diffuse"
558
+ MODELS = (
559
+ LayeredDiffusionBase(
560
+ model_file_name="layer_sd15_fg2bg.safetensors",
561
+ model_url="https://huggingface.co/LayerDiffusion/layerdiffusion-v1/resolve/main/layer_sd15_fg2bg.safetensors",
562
+ sd_version=StableDiffusionVersion.SD1x,
563
+ attn_sharing=True,
564
+ frames=2,
565
+ cond_type=LayerType.FG,
566
+ ),
567
+ LayeredDiffusionBase(
568
+ model_file_name="layer_sd15_bg2fg.safetensors",
569
+ model_url="https://huggingface.co/LayerDiffusion/layerdiffusion-v1/resolve/main/layer_sd15_bg2fg.safetensors",
570
+ sd_version=StableDiffusionVersion.SD1x,
571
+ attn_sharing=True,
572
+ frames=2,
573
+ cond_type=LayerType.BG,
574
+ ),
575
+ )
576
+
577
+ def apply_layered_diffusion(
578
+ self,
579
+ model: ModelPatcher,
580
+ image,
581
+ config: str,
582
+ cond: Optional[List[List[torch.TensorType]]] = None,
583
+ blended_cond: Optional[List[List[torch.TensorType]]] = None,
584
+ ):
585
+ ld_model = [m for m in self.MODELS if m.config_string == config][0]
586
+ assert get_model_sd_version(model) == ld_model.sd_version
587
+ assert ld_model.attn_sharing
588
+ work_model = ld_model.apply_layered_diffusion_attn_sharing(
589
+ model, control_img=image.movedim(-1, 1)
590
+ )[0]
591
+ work_model.model_options.setdefault("transformer_options", {})
592
+ work_model.model_options["transformer_options"]["cond_overwrite"] = [
593
+ cond[0][0] if cond is not None else None
594
+ for cond in (
595
+ cond,
596
+ blended_cond,
597
+ )
598
+ ]
599
+ return (work_model,)
600
+
601
+
602
+ class LayeredDiffusionDiff:
603
+ """Extract FG/BG from blended image.
604
+ - Blended + FG => BG
605
+ - Blended + BG => FG
606
+ """
607
+
608
+ @classmethod
609
+ def INPUT_TYPES(s):
610
+ return {
611
+ "required": {
612
+ "model": ("MODEL",),
613
+ "cond": ("CONDITIONING",),
614
+ "uncond": ("CONDITIONING",),
615
+ "blended_latent": ("LATENT",),
616
+ "latent": ("LATENT",),
617
+ "config": ([c.config_string for c in s.MODELS],),
618
+ "weight": (
619
+ "FLOAT",
620
+ {"default": 1.0, "min": -1, "max": 3, "step": 0.05},
621
+ ),
622
+ },
623
+ }
624
+
625
+ RETURN_TYPES = ("MODEL", "CONDITIONING", "CONDITIONING")
626
+ FUNCTION = "apply_layered_diffusion"
627
+ CATEGORY = "layer_diffuse"
628
+ MODELS = (
629
+ LayeredDiffusionBase(
630
+ model_file_name="layer_xl_fgble2bg.safetensors",
631
+ model_url="https://huggingface.co/LayerDiffusion/layerdiffusion-v1/resolve/main/layer_xl_fgble2bg.safetensors",
632
+ sd_version=StableDiffusionVersion.SDXL,
633
+ cond_type=LayerType.FG,
634
+ ),
635
+ LayeredDiffusionBase(
636
+ model_file_name="layer_xl_bgble2fg.safetensors",
637
+ model_url="https://huggingface.co/LayerDiffusion/layerdiffusion-v1/resolve/main/layer_xl_bgble2fg.safetensors",
638
+ sd_version=StableDiffusionVersion.SDXL,
639
+ cond_type=LayerType.BG,
640
+ ),
641
+ )
642
+
643
+ def apply_layered_diffusion(
644
+ self,
645
+ model: ModelPatcher,
646
+ cond,
647
+ uncond,
648
+ blended_latent,
649
+ latent,
650
+ config: str,
651
+ weight: float,
652
+ ):
653
+ ld_model = [m for m in self.MODELS if m.config_string == config][0]
654
+ assert get_model_sd_version(model) == ld_model.sd_version
655
+ c_concat = model.model.latent_format.process_in(
656
+ torch.cat([latent["samples"], blended_latent["samples"]], dim=1)
657
+ )
658
+ return ld_model.apply_layered_diffusion(
659
+ model, weight
660
+ ) + ld_model.apply_c_concat(cond, uncond, c_concat)
661
+
662
+
663
+ NODE_CLASS_MAPPINGS = {
664
+ "LayeredDiffusionApply": LayeredDiffusionFG,
665
+ "LayeredDiffusionJointApply": LayeredDiffusionJoint,
666
+ "LayeredDiffusionCondApply": LayeredDiffusionCond,
667
+ "LayeredDiffusionCondJointApply": LayeredDiffusionCondJoint,
668
+ "LayeredDiffusionDiffApply": LayeredDiffusionDiff,
669
+ "LayeredDiffusionDecode": LayeredDiffusionDecode,
670
+ "LayeredDiffusionDecodeRGBA": LayeredDiffusionDecodeRGBA,
671
+ "LayeredDiffusionDecodeSplit": LayeredDiffusionDecodeSplit,
672
+ }
673
+
674
+ NODE_DISPLAY_NAME_MAPPINGS = {
675
+ "LayeredDiffusionApply": "Layer Diffuse Apply",
676
+ "LayeredDiffusionJointApply": "Layer Diffuse Joint Apply",
677
+ "LayeredDiffusionCondApply": "Layer Diffuse Cond Apply",
678
+ "LayeredDiffusionCondJointApply": "Layer Diffuse Cond Joint Apply",
679
+ "LayeredDiffusionDiffApply": "Layer Diffuse Diff Apply",
680
+ "LayeredDiffusionDecode": "Layer Diffuse Decode",
681
+ "LayeredDiffusionDecodeRGBA": "Layer Diffuse Decode (RGBA)",
682
+ "LayeredDiffusionDecodeSplit": "Layer Diffuse Decode (Split)",
683
+ }
ComfyUI/custom_nodes/layerdiffuse/lib_layerdiffusion/__init__.py ADDED
File without changes
ComfyUI/custom_nodes/layerdiffuse/lib_layerdiffusion/attention_sharing.py ADDED
@@ -0,0 +1,360 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Currently only sd15
2
+
3
+ import functools
4
+ import torch
5
+ import einops
6
+
7
+ from comfy import model_management, utils
8
+ from comfy.ldm.modules.attention import optimized_attention
9
+
10
+
11
+ module_mapping_sd15 = {
12
+ 0: "input_blocks.1.1.transformer_blocks.0.attn1",
13
+ 1: "input_blocks.1.1.transformer_blocks.0.attn2",
14
+ 2: "input_blocks.2.1.transformer_blocks.0.attn1",
15
+ 3: "input_blocks.2.1.transformer_blocks.0.attn2",
16
+ 4: "input_blocks.4.1.transformer_blocks.0.attn1",
17
+ 5: "input_blocks.4.1.transformer_blocks.0.attn2",
18
+ 6: "input_blocks.5.1.transformer_blocks.0.attn1",
19
+ 7: "input_blocks.5.1.transformer_blocks.0.attn2",
20
+ 8: "input_blocks.7.1.transformer_blocks.0.attn1",
21
+ 9: "input_blocks.7.1.transformer_blocks.0.attn2",
22
+ 10: "input_blocks.8.1.transformer_blocks.0.attn1",
23
+ 11: "input_blocks.8.1.transformer_blocks.0.attn2",
24
+ 12: "output_blocks.3.1.transformer_blocks.0.attn1",
25
+ 13: "output_blocks.3.1.transformer_blocks.0.attn2",
26
+ 14: "output_blocks.4.1.transformer_blocks.0.attn1",
27
+ 15: "output_blocks.4.1.transformer_blocks.0.attn2",
28
+ 16: "output_blocks.5.1.transformer_blocks.0.attn1",
29
+ 17: "output_blocks.5.1.transformer_blocks.0.attn2",
30
+ 18: "output_blocks.6.1.transformer_blocks.0.attn1",
31
+ 19: "output_blocks.6.1.transformer_blocks.0.attn2",
32
+ 20: "output_blocks.7.1.transformer_blocks.0.attn1",
33
+ 21: "output_blocks.7.1.transformer_blocks.0.attn2",
34
+ 22: "output_blocks.8.1.transformer_blocks.0.attn1",
35
+ 23: "output_blocks.8.1.transformer_blocks.0.attn2",
36
+ 24: "output_blocks.9.1.transformer_blocks.0.attn1",
37
+ 25: "output_blocks.9.1.transformer_blocks.0.attn2",
38
+ 26: "output_blocks.10.1.transformer_blocks.0.attn1",
39
+ 27: "output_blocks.10.1.transformer_blocks.0.attn2",
40
+ 28: "output_blocks.11.1.transformer_blocks.0.attn1",
41
+ 29: "output_blocks.11.1.transformer_blocks.0.attn2",
42
+ 30: "middle_block.1.transformer_blocks.0.attn1",
43
+ 31: "middle_block.1.transformer_blocks.0.attn2",
44
+ }
45
+
46
+
47
+ def compute_cond_mark(cond_or_uncond, sigmas):
48
+ cond_or_uncond_size = int(sigmas.shape[0])
49
+
50
+ cond_mark = []
51
+ for cx in cond_or_uncond:
52
+ cond_mark += [cx] * cond_or_uncond_size
53
+
54
+ cond_mark = torch.Tensor(cond_mark).to(sigmas)
55
+ return cond_mark
56
+
57
+
58
+ class LoRALinearLayer(torch.nn.Module):
59
+ def __init__(self, in_features: int, out_features: int, rank: int = 256, org=None):
60
+ super().__init__()
61
+ self.down = torch.nn.Linear(in_features, rank, bias=False)
62
+ self.up = torch.nn.Linear(rank, out_features, bias=False)
63
+ self.org = [org]
64
+
65
+ def forward(self, h):
66
+ org_weight = self.org[0].weight.to(h)
67
+ org_bias = self.org[0].bias.to(h) if self.org[0].bias is not None else None
68
+ down_weight = self.down.weight
69
+ up_weight = self.up.weight
70
+ final_weight = org_weight + torch.mm(up_weight, down_weight)
71
+ return torch.nn.functional.linear(h, final_weight, org_bias)
72
+
73
+
74
+ class AttentionSharingUnit(torch.nn.Module):
75
+ # `transformer_options` passed to the most recent BasicTransformerBlock.forward
76
+ # call.
77
+ transformer_options: dict = {}
78
+
79
+ def __init__(self, module, frames=2, use_control=True, rank=256):
80
+ super().__init__()
81
+
82
+ self.heads = module.heads
83
+ self.frames = frames
84
+ self.original_module = [module]
85
+ q_in_channels, q_out_channels = (
86
+ module.to_q.in_features,
87
+ module.to_q.out_features,
88
+ )
89
+ k_in_channels, k_out_channels = (
90
+ module.to_k.in_features,
91
+ module.to_k.out_features,
92
+ )
93
+ v_in_channels, v_out_channels = (
94
+ module.to_v.in_features,
95
+ module.to_v.out_features,
96
+ )
97
+ o_in_channels, o_out_channels = (
98
+ module.to_out[0].in_features,
99
+ module.to_out[0].out_features,
100
+ )
101
+
102
+ hidden_size = k_out_channels
103
+
104
+ self.to_q_lora = [
105
+ LoRALinearLayer(q_in_channels, q_out_channels, rank, module.to_q)
106
+ for _ in range(self.frames)
107
+ ]
108
+ self.to_k_lora = [
109
+ LoRALinearLayer(k_in_channels, k_out_channels, rank, module.to_k)
110
+ for _ in range(self.frames)
111
+ ]
112
+ self.to_v_lora = [
113
+ LoRALinearLayer(v_in_channels, v_out_channels, rank, module.to_v)
114
+ for _ in range(self.frames)
115
+ ]
116
+ self.to_out_lora = [
117
+ LoRALinearLayer(o_in_channels, o_out_channels, rank, module.to_out[0])
118
+ for _ in range(self.frames)
119
+ ]
120
+
121
+ self.to_q_lora = torch.nn.ModuleList(self.to_q_lora)
122
+ self.to_k_lora = torch.nn.ModuleList(self.to_k_lora)
123
+ self.to_v_lora = torch.nn.ModuleList(self.to_v_lora)
124
+ self.to_out_lora = torch.nn.ModuleList(self.to_out_lora)
125
+
126
+ self.temporal_i = torch.nn.Linear(
127
+ in_features=hidden_size, out_features=hidden_size
128
+ )
129
+ self.temporal_n = torch.nn.LayerNorm(
130
+ hidden_size, elementwise_affine=True, eps=1e-6
131
+ )
132
+ self.temporal_q = torch.nn.Linear(
133
+ in_features=hidden_size, out_features=hidden_size
134
+ )
135
+ self.temporal_k = torch.nn.Linear(
136
+ in_features=hidden_size, out_features=hidden_size
137
+ )
138
+ self.temporal_v = torch.nn.Linear(
139
+ in_features=hidden_size, out_features=hidden_size
140
+ )
141
+ self.temporal_o = torch.nn.Linear(
142
+ in_features=hidden_size, out_features=hidden_size
143
+ )
144
+
145
+ self.control_convs = None
146
+
147
+ if use_control:
148
+ self.control_convs = [
149
+ torch.nn.Sequential(
150
+ torch.nn.Conv2d(256, 256, kernel_size=3, padding=1, stride=1),
151
+ torch.nn.SiLU(),
152
+ torch.nn.Conv2d(256, hidden_size, kernel_size=1),
153
+ )
154
+ for _ in range(self.frames)
155
+ ]
156
+ self.control_convs = torch.nn.ModuleList(self.control_convs)
157
+
158
+ self.control_signals = None
159
+
160
+ def forward(self, h, context=None, value=None):
161
+ transformer_options = self.transformer_options
162
+
163
+ modified_hidden_states = einops.rearrange(
164
+ h, "(b f) d c -> f b d c", f=self.frames
165
+ )
166
+
167
+ if self.control_convs is not None:
168
+ context_dim = int(modified_hidden_states.shape[2])
169
+ control_outs = []
170
+ for f in range(self.frames):
171
+ control_signal = self.control_signals[context_dim].to(
172
+ modified_hidden_states
173
+ )
174
+ control = self.control_convs[f](control_signal)
175
+ control = einops.rearrange(control, "b c h w -> b (h w) c")
176
+ control_outs.append(control)
177
+ control_outs = torch.stack(control_outs, dim=0)
178
+ modified_hidden_states = modified_hidden_states + control_outs.to(
179
+ modified_hidden_states
180
+ )
181
+
182
+ if context is None:
183
+ framed_context = modified_hidden_states
184
+ else:
185
+ framed_context = einops.rearrange(
186
+ context, "(b f) d c -> f b d c", f=self.frames
187
+ )
188
+
189
+ framed_cond_mark = einops.rearrange(
190
+ compute_cond_mark(
191
+ transformer_options["cond_or_uncond"],
192
+ transformer_options["sigmas"],
193
+ ),
194
+ "(b f) -> f b",
195
+ f=self.frames,
196
+ ).to(modified_hidden_states)
197
+
198
+ attn_outs = []
199
+ for f in range(self.frames):
200
+ fcf = framed_context[f]
201
+
202
+ if context is not None:
203
+ cond_overwrite = transformer_options.get("cond_overwrite", [])
204
+ if len(cond_overwrite) > f:
205
+ cond_overwrite = cond_overwrite[f]
206
+ else:
207
+ cond_overwrite = None
208
+ if cond_overwrite is not None:
209
+ cond_mark = framed_cond_mark[f][:, None, None]
210
+ fcf = cond_overwrite.to(fcf) * (1.0 - cond_mark) + fcf * cond_mark
211
+
212
+ q = self.to_q_lora[f](modified_hidden_states[f])
213
+ k = self.to_k_lora[f](fcf)
214
+ v = self.to_v_lora[f](fcf)
215
+ o = optimized_attention(q, k, v, self.heads)
216
+ o = self.to_out_lora[f](o)
217
+ o = self.original_module[0].to_out[1](o)
218
+ attn_outs.append(o)
219
+
220
+ attn_outs = torch.stack(attn_outs, dim=0)
221
+ modified_hidden_states = modified_hidden_states + attn_outs.to(
222
+ modified_hidden_states
223
+ )
224
+ modified_hidden_states = einops.rearrange(
225
+ modified_hidden_states, "f b d c -> (b f) d c", f=self.frames
226
+ )
227
+
228
+ x = modified_hidden_states
229
+ x = self.temporal_n(x)
230
+ x = self.temporal_i(x)
231
+ d = x.shape[1]
232
+
233
+ x = einops.rearrange(x, "(b f) d c -> (b d) f c", f=self.frames)
234
+
235
+ q = self.temporal_q(x)
236
+ k = self.temporal_k(x)
237
+ v = self.temporal_v(x)
238
+
239
+ x = optimized_attention(q, k, v, self.heads)
240
+ x = self.temporal_o(x)
241
+ x = einops.rearrange(x, "(b d) f c -> (b f) d c", d=d)
242
+
243
+ modified_hidden_states = modified_hidden_states + x
244
+
245
+ return modified_hidden_states - h
246
+
247
+ @classmethod
248
+ def hijack_transformer_block(cls):
249
+ def register_get_transformer_options(func):
250
+ @functools.wraps(func)
251
+ def forward(self, x, context=None, transformer_options={}):
252
+ cls.transformer_options = transformer_options
253
+ return func(self, x, context, transformer_options)
254
+
255
+ return forward
256
+
257
+ from comfy.ldm.modules.attention import BasicTransformerBlock
258
+
259
+ BasicTransformerBlock.forward = register_get_transformer_options(
260
+ BasicTransformerBlock.forward
261
+ )
262
+
263
+
264
+ AttentionSharingUnit.hijack_transformer_block()
265
+
266
+
267
+ class AdditionalAttentionCondsEncoder(torch.nn.Module):
268
+ def __init__(self):
269
+ super().__init__()
270
+
271
+ self.blocks_0 = torch.nn.Sequential(
272
+ torch.nn.Conv2d(3, 32, kernel_size=3, padding=1, stride=1),
273
+ torch.nn.SiLU(),
274
+ torch.nn.Conv2d(32, 32, kernel_size=3, padding=1, stride=1),
275
+ torch.nn.SiLU(),
276
+ torch.nn.Conv2d(32, 64, kernel_size=3, padding=1, stride=2),
277
+ torch.nn.SiLU(),
278
+ torch.nn.Conv2d(64, 64, kernel_size=3, padding=1, stride=1),
279
+ torch.nn.SiLU(),
280
+ torch.nn.Conv2d(64, 128, kernel_size=3, padding=1, stride=2),
281
+ torch.nn.SiLU(),
282
+ torch.nn.Conv2d(128, 128, kernel_size=3, padding=1, stride=1),
283
+ torch.nn.SiLU(),
284
+ torch.nn.Conv2d(128, 256, kernel_size=3, padding=1, stride=2),
285
+ torch.nn.SiLU(),
286
+ torch.nn.Conv2d(256, 256, kernel_size=3, padding=1, stride=1),
287
+ torch.nn.SiLU(),
288
+ ) # 64*64*256
289
+
290
+ self.blocks_1 = torch.nn.Sequential(
291
+ torch.nn.Conv2d(256, 256, kernel_size=3, padding=1, stride=2),
292
+ torch.nn.SiLU(),
293
+ torch.nn.Conv2d(256, 256, kernel_size=3, padding=1, stride=1),
294
+ torch.nn.SiLU(),
295
+ ) # 32*32*256
296
+
297
+ self.blocks_2 = torch.nn.Sequential(
298
+ torch.nn.Conv2d(256, 256, kernel_size=3, padding=1, stride=2),
299
+ torch.nn.SiLU(),
300
+ torch.nn.Conv2d(256, 256, kernel_size=3, padding=1, stride=1),
301
+ torch.nn.SiLU(),
302
+ ) # 16*16*256
303
+
304
+ self.blocks_3 = torch.nn.Sequential(
305
+ torch.nn.Conv2d(256, 256, kernel_size=3, padding=1, stride=2),
306
+ torch.nn.SiLU(),
307
+ torch.nn.Conv2d(256, 256, kernel_size=3, padding=1, stride=1),
308
+ torch.nn.SiLU(),
309
+ ) # 8*8*256
310
+
311
+ self.blks = [self.blocks_0, self.blocks_1, self.blocks_2, self.blocks_3]
312
+
313
+ def __call__(self, h):
314
+ results = {}
315
+ for b in self.blks:
316
+ h = b(h)
317
+ results[int(h.shape[2]) * int(h.shape[3])] = h
318
+ return results
319
+
320
+
321
+ class HookerLayers(torch.nn.Module):
322
+ def __init__(self, layer_list):
323
+ super().__init__()
324
+ self.layers = torch.nn.ModuleList(layer_list)
325
+
326
+
327
+ class AttentionSharingPatcher(torch.nn.Module):
328
+ def __init__(self, unet, frames=2, use_control=True, rank=256):
329
+ super().__init__()
330
+ model_management.unload_model_clones(unet)
331
+
332
+ units = []
333
+ for i in range(32):
334
+ real_key = module_mapping_sd15[i]
335
+ attn_module = utils.get_attr(unet.model.diffusion_model, real_key)
336
+ u = AttentionSharingUnit(
337
+ attn_module, frames=frames, use_control=use_control, rank=rank
338
+ )
339
+ units.append(u)
340
+ unet.add_object_patch("diffusion_model." + real_key, u)
341
+
342
+ self.hookers = HookerLayers(units)
343
+
344
+ if use_control:
345
+ self.kwargs_encoder = AdditionalAttentionCondsEncoder()
346
+ else:
347
+ self.kwargs_encoder = None
348
+
349
+ self.dtype = torch.float32
350
+ if model_management.should_use_fp16(model_management.get_torch_device()):
351
+ self.dtype = torch.float16
352
+ self.hookers.half()
353
+ return
354
+
355
+ def set_control(self, img):
356
+ img = img.cpu().float() * 2.0 - 1.0
357
+ signals = self.kwargs_encoder(img)
358
+ for m in self.hookers.layers:
359
+ m.control_signals = signals
360
+ return
ComfyUI/custom_nodes/layerdiffuse/lib_layerdiffusion/enums.py ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from enum import Enum
2
+
3
+
4
+ class ResizeMode(Enum):
5
+ RESIZE = "Just Resize"
6
+ CROP_AND_RESIZE = "Crop and Resize"
7
+ RESIZE_AND_FILL = "Resize and Fill"
8
+
9
+ def int_value(self):
10
+ if self == ResizeMode.RESIZE:
11
+ return 0
12
+ elif self == ResizeMode.CROP_AND_RESIZE:
13
+ return 1
14
+ elif self == ResizeMode.RESIZE_AND_FILL:
15
+ return 2
16
+ return 0
17
+
18
+
19
+ class StableDiffusionVersion(Enum):
20
+ """The version family of stable diffusion model."""
21
+
22
+ SD1x = "SD15"
23
+ SDXL = "SDXL"
ComfyUI/custom_nodes/layerdiffuse/lib_layerdiffusion/models.py ADDED
@@ -0,0 +1,318 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+ import torch
3
+ import cv2
4
+ import numpy as np
5
+
6
+ from tqdm import tqdm
7
+ from typing import Optional, Tuple
8
+ from diffusers.configuration_utils import ConfigMixin, register_to_config
9
+ from diffusers.models.modeling_utils import ModelMixin
10
+ from diffusers.models.unet_2d_blocks import UNetMidBlock2D, get_down_block, get_up_block
11
+
12
+
13
+ def check_diffusers_version():
14
+ import diffusers
15
+ from packaging.version import parse
16
+
17
+ assert parse(diffusers.__version__) >= parse(
18
+ "0.25.0"
19
+ ), "diffusers>=0.25.0 requirement not satisfied. Please install correct diffusers version."
20
+
21
+
22
+ check_diffusers_version()
23
+
24
+
25
+ def zero_module(module):
26
+ """
27
+ Zero out the parameters of a module and return it.
28
+ """
29
+ for p in module.parameters():
30
+ p.detach().zero_()
31
+ return module
32
+
33
+
34
+ class LatentTransparencyOffsetEncoder(torch.nn.Module):
35
+ def __init__(self, *args, **kwargs):
36
+ super().__init__(*args, **kwargs)
37
+ self.blocks = torch.nn.Sequential(
38
+ torch.nn.Conv2d(4, 32, kernel_size=3, padding=1, stride=1),
39
+ nn.SiLU(),
40
+ torch.nn.Conv2d(32, 32, kernel_size=3, padding=1, stride=1),
41
+ nn.SiLU(),
42
+ torch.nn.Conv2d(32, 64, kernel_size=3, padding=1, stride=2),
43
+ nn.SiLU(),
44
+ torch.nn.Conv2d(64, 64, kernel_size=3, padding=1, stride=1),
45
+ nn.SiLU(),
46
+ torch.nn.Conv2d(64, 128, kernel_size=3, padding=1, stride=2),
47
+ nn.SiLU(),
48
+ torch.nn.Conv2d(128, 128, kernel_size=3, padding=1, stride=1),
49
+ nn.SiLU(),
50
+ torch.nn.Conv2d(128, 256, kernel_size=3, padding=1, stride=2),
51
+ nn.SiLU(),
52
+ torch.nn.Conv2d(256, 256, kernel_size=3, padding=1, stride=1),
53
+ nn.SiLU(),
54
+ zero_module(torch.nn.Conv2d(256, 4, kernel_size=3, padding=1, stride=1)),
55
+ )
56
+
57
+ def __call__(self, x):
58
+ return self.blocks(x)
59
+
60
+
61
+ # 1024 * 1024 * 3 -> 16 * 16 * 512 -> 1024 * 1024 * 3
62
+ class UNet1024(ModelMixin, ConfigMixin):
63
+ @register_to_config
64
+ def __init__(
65
+ self,
66
+ in_channels: int = 3,
67
+ out_channels: int = 3,
68
+ down_block_types: Tuple[str] = (
69
+ "DownBlock2D",
70
+ "DownBlock2D",
71
+ "DownBlock2D",
72
+ "DownBlock2D",
73
+ "AttnDownBlock2D",
74
+ "AttnDownBlock2D",
75
+ "AttnDownBlock2D",
76
+ ),
77
+ up_block_types: Tuple[str] = (
78
+ "AttnUpBlock2D",
79
+ "AttnUpBlock2D",
80
+ "AttnUpBlock2D",
81
+ "UpBlock2D",
82
+ "UpBlock2D",
83
+ "UpBlock2D",
84
+ "UpBlock2D",
85
+ ),
86
+ block_out_channels: Tuple[int] = (32, 32, 64, 128, 256, 512, 512),
87
+ layers_per_block: int = 2,
88
+ mid_block_scale_factor: float = 1,
89
+ downsample_padding: int = 1,
90
+ downsample_type: str = "conv",
91
+ upsample_type: str = "conv",
92
+ dropout: float = 0.0,
93
+ act_fn: str = "silu",
94
+ attention_head_dim: Optional[int] = 8,
95
+ norm_num_groups: int = 4,
96
+ norm_eps: float = 1e-5,
97
+ ):
98
+ super().__init__()
99
+
100
+ # input
101
+ self.conv_in = nn.Conv2d(
102
+ in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1)
103
+ )
104
+ self.latent_conv_in = zero_module(
105
+ nn.Conv2d(4, block_out_channels[2], kernel_size=1)
106
+ )
107
+
108
+ self.down_blocks = nn.ModuleList([])
109
+ self.mid_block = None
110
+ self.up_blocks = nn.ModuleList([])
111
+
112
+ # down
113
+ output_channel = block_out_channels[0]
114
+ for i, down_block_type in enumerate(down_block_types):
115
+ input_channel = output_channel
116
+ output_channel = block_out_channels[i]
117
+ is_final_block = i == len(block_out_channels) - 1
118
+
119
+ down_block = get_down_block(
120
+ down_block_type,
121
+ num_layers=layers_per_block,
122
+ in_channels=input_channel,
123
+ out_channels=output_channel,
124
+ temb_channels=None,
125
+ add_downsample=not is_final_block,
126
+ resnet_eps=norm_eps,
127
+ resnet_act_fn=act_fn,
128
+ resnet_groups=norm_num_groups,
129
+ attention_head_dim=(
130
+ attention_head_dim
131
+ if attention_head_dim is not None
132
+ else output_channel
133
+ ),
134
+ downsample_padding=downsample_padding,
135
+ resnet_time_scale_shift="default",
136
+ downsample_type=downsample_type,
137
+ dropout=dropout,
138
+ )
139
+ self.down_blocks.append(down_block)
140
+
141
+ # mid
142
+ self.mid_block = UNetMidBlock2D(
143
+ in_channels=block_out_channels[-1],
144
+ temb_channels=None,
145
+ dropout=dropout,
146
+ resnet_eps=norm_eps,
147
+ resnet_act_fn=act_fn,
148
+ output_scale_factor=mid_block_scale_factor,
149
+ resnet_time_scale_shift="default",
150
+ attention_head_dim=(
151
+ attention_head_dim
152
+ if attention_head_dim is not None
153
+ else block_out_channels[-1]
154
+ ),
155
+ resnet_groups=norm_num_groups,
156
+ attn_groups=None,
157
+ add_attention=True,
158
+ )
159
+
160
+ # up
161
+ reversed_block_out_channels = list(reversed(block_out_channels))
162
+ output_channel = reversed_block_out_channels[0]
163
+ for i, up_block_type in enumerate(up_block_types):
164
+ prev_output_channel = output_channel
165
+ output_channel = reversed_block_out_channels[i]
166
+ input_channel = reversed_block_out_channels[
167
+ min(i + 1, len(block_out_channels) - 1)
168
+ ]
169
+
170
+ is_final_block = i == len(block_out_channels) - 1
171
+
172
+ up_block = get_up_block(
173
+ up_block_type,
174
+ num_layers=layers_per_block + 1,
175
+ in_channels=input_channel,
176
+ out_channels=output_channel,
177
+ prev_output_channel=prev_output_channel,
178
+ temb_channels=None,
179
+ add_upsample=not is_final_block,
180
+ resnet_eps=norm_eps,
181
+ resnet_act_fn=act_fn,
182
+ resnet_groups=norm_num_groups,
183
+ attention_head_dim=(
184
+ attention_head_dim
185
+ if attention_head_dim is not None
186
+ else output_channel
187
+ ),
188
+ resnet_time_scale_shift="default",
189
+ upsample_type=upsample_type,
190
+ dropout=dropout,
191
+ )
192
+ self.up_blocks.append(up_block)
193
+ prev_output_channel = output_channel
194
+
195
+ # out
196
+ self.conv_norm_out = nn.GroupNorm(
197
+ num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
198
+ )
199
+ self.conv_act = nn.SiLU()
200
+ self.conv_out = nn.Conv2d(
201
+ block_out_channels[0], out_channels, kernel_size=3, padding=1
202
+ )
203
+
204
+ def forward(self, x, latent):
205
+ sample_latent = self.latent_conv_in(latent)
206
+ sample = self.conv_in(x)
207
+ emb = None
208
+
209
+ down_block_res_samples = (sample,)
210
+ for i, downsample_block in enumerate(self.down_blocks):
211
+ if i == 3:
212
+ sample = sample + sample_latent
213
+
214
+ sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
215
+ down_block_res_samples += res_samples
216
+
217
+ sample = self.mid_block(sample, emb)
218
+
219
+ for upsample_block in self.up_blocks:
220
+ res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
221
+ down_block_res_samples = down_block_res_samples[
222
+ : -len(upsample_block.resnets)
223
+ ]
224
+ sample = upsample_block(sample, res_samples, emb)
225
+
226
+ sample = self.conv_norm_out(sample)
227
+ sample = self.conv_act(sample)
228
+ sample = self.conv_out(sample)
229
+ return sample
230
+
231
+
232
+ def checkerboard(shape):
233
+ return np.indices(shape).sum(axis=0) % 2
234
+
235
+
236
+ def fill_checkerboard_bg(y: torch.Tensor) -> torch.Tensor:
237
+ alpha = y[..., :1]
238
+ fg = y[..., 1:]
239
+ B, H, W, C = fg.shape
240
+ cb = checkerboard(shape=(H // 64, W // 64))
241
+ cb = cv2.resize(cb, (W, H), interpolation=cv2.INTER_NEAREST)
242
+ cb = (0.5 + (cb - 0.5) * 0.1)[None, ..., None]
243
+ cb = torch.from_numpy(cb).to(fg)
244
+ vis = fg * alpha + cb * (1 - alpha)
245
+ return vis
246
+
247
+
248
+ class TransparentVAEDecoder:
249
+ def __init__(self, sd, device, dtype):
250
+ self.load_device = device
251
+ self.dtype = dtype
252
+
253
+ model = UNet1024(in_channels=3, out_channels=4)
254
+ model.load_state_dict(sd, strict=True)
255
+ model.to(self.load_device, dtype=self.dtype)
256
+ model.eval()
257
+ self.model = model
258
+
259
+ @torch.no_grad()
260
+ def estimate_single_pass(self, pixel, latent):
261
+ y = self.model(pixel, latent)
262
+ return y
263
+
264
+ @torch.no_grad()
265
+ def estimate_augmented(self, pixel, latent):
266
+ args = [
267
+ [False, 0],
268
+ [False, 1],
269
+ [False, 2],
270
+ [False, 3],
271
+ [True, 0],
272
+ [True, 1],
273
+ [True, 2],
274
+ [True, 3],
275
+ ]
276
+
277
+ result = []
278
+
279
+ for flip, rok in tqdm(args):
280
+ feed_pixel = pixel.clone()
281
+ feed_latent = latent.clone()
282
+
283
+ if flip:
284
+ feed_pixel = torch.flip(feed_pixel, dims=(3,))
285
+ feed_latent = torch.flip(feed_latent, dims=(3,))
286
+
287
+ feed_pixel = torch.rot90(feed_pixel, k=rok, dims=(2, 3))
288
+ feed_latent = torch.rot90(feed_latent, k=rok, dims=(2, 3))
289
+
290
+ eps = self.estimate_single_pass(feed_pixel, feed_latent).clip(0, 1)
291
+ eps = torch.rot90(eps, k=-rok, dims=(2, 3))
292
+
293
+ if flip:
294
+ eps = torch.flip(eps, dims=(3,))
295
+
296
+ result += [eps]
297
+
298
+ result = torch.stack(result, dim=0)
299
+ median = torch.median(result, dim=0).values
300
+ return median
301
+
302
+ @torch.no_grad()
303
+ def decode_pixel(
304
+ self, pixel: torch.TensorType, latent: torch.TensorType
305
+ ) -> torch.TensorType:
306
+ # pixel.shape = [B, C=3, H, W]
307
+ assert pixel.shape[1] == 3
308
+ pixel_device = pixel.device
309
+ pixel_dtype = pixel.dtype
310
+
311
+ pixel = pixel.to(device=self.load_device, dtype=self.dtype)
312
+ latent = latent.to(device=self.load_device, dtype=self.dtype)
313
+ # y.shape = [B, C=4, H, W]
314
+ y = self.estimate_augmented(pixel, latent)
315
+ y = y.clip(0, 1)
316
+ assert y.shape[1] == 4
317
+ # Restore image to original device of input image.
318
+ return y.to(pixel_device, dtype=pixel_dtype)
ComfyUI/custom_nodes/layerdiffuse/lib_layerdiffusion/utils.py ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from .enums import ResizeMode
3
+ import cv2
4
+ import torch
5
+ import os
6
+ from urllib.parse import urlparse
7
+ from typing import Optional
8
+
9
+
10
+ def rgba2rgbfp32(x):
11
+ rgb = x[..., :3].astype(np.float32) / 255.0
12
+ a = x[..., 3:4].astype(np.float32) / 255.0
13
+ return 0.5 + (rgb - 0.5) * a
14
+
15
+
16
+ def to255unit8(x):
17
+ return (x * 255.0).clip(0, 255).astype(np.uint8)
18
+
19
+
20
+ def safe_numpy(x):
21
+ # A very safe method to make sure that Apple/Mac works
22
+ y = x
23
+
24
+ # below is very boring but do not change these. If you change these Apple or Mac may fail.
25
+ y = y.copy()
26
+ y = np.ascontiguousarray(y)
27
+ y = y.copy()
28
+ return y
29
+
30
+
31
+ def high_quality_resize(x, size):
32
+ if x.shape[0] != size[1] or x.shape[1] != size[0]:
33
+ if (size[0] * size[1]) < (x.shape[0] * x.shape[1]):
34
+ interpolation = cv2.INTER_AREA
35
+ else:
36
+ interpolation = cv2.INTER_LANCZOS4
37
+
38
+ y = cv2.resize(x, size, interpolation=interpolation)
39
+ else:
40
+ y = x
41
+ return y
42
+
43
+
44
+ def crop_and_resize_image(detected_map, resize_mode, h, w):
45
+ if resize_mode == ResizeMode.RESIZE:
46
+ detected_map = high_quality_resize(detected_map, (w, h))
47
+ detected_map = safe_numpy(detected_map)
48
+ return detected_map
49
+
50
+ old_h, old_w, _ = detected_map.shape
51
+ old_w = float(old_w)
52
+ old_h = float(old_h)
53
+ k0 = float(h) / old_h
54
+ k1 = float(w) / old_w
55
+
56
+ def safeint(x):
57
+ return int(np.round(x))
58
+
59
+ if resize_mode == ResizeMode.RESIZE_AND_FILL:
60
+ k = min(k0, k1)
61
+ borders = np.concatenate([detected_map[0, :, :], detected_map[-1, :, :], detected_map[:, 0, :], detected_map[:, -1, :]], axis=0)
62
+ high_quality_border_color = np.median(borders, axis=0).astype(detected_map.dtype)
63
+ high_quality_background = np.tile(high_quality_border_color[None, None], [h, w, 1])
64
+ detected_map = high_quality_resize(detected_map, (safeint(old_w * k), safeint(old_h * k)))
65
+ new_h, new_w, _ = detected_map.shape
66
+ pad_h = max(0, (h - new_h) // 2)
67
+ pad_w = max(0, (w - new_w) // 2)
68
+ high_quality_background[pad_h:pad_h + new_h, pad_w:pad_w + new_w] = detected_map
69
+ detected_map = high_quality_background
70
+ detected_map = safe_numpy(detected_map)
71
+ return detected_map
72
+ else:
73
+ k = max(k0, k1)
74
+ detected_map = high_quality_resize(detected_map, (safeint(old_w * k), safeint(old_h * k)))
75
+ new_h, new_w, _ = detected_map.shape
76
+ pad_h = max(0, (new_h - h) // 2)
77
+ pad_w = max(0, (new_w - w) // 2)
78
+ detected_map = detected_map[pad_h:pad_h+h, pad_w:pad_w+w]
79
+ detected_map = safe_numpy(detected_map)
80
+ return detected_map
81
+
82
+
83
+ def pytorch_to_numpy(x):
84
+ return [np.clip(255. * y.cpu().numpy(), 0, 255).astype(np.uint8) for y in x]
85
+
86
+
87
+ def numpy_to_pytorch(x):
88
+ y = x.astype(np.float32) / 255.0
89
+ y = y[None]
90
+ y = np.ascontiguousarray(y.copy())
91
+ y = torch.from_numpy(y).float()
92
+ return y
93
+
94
+
95
+ def load_file_from_url(
96
+ url: str,
97
+ *,
98
+ model_dir: str,
99
+ progress: bool = True,
100
+ file_name: Optional[str] = None,
101
+ ) -> str:
102
+ """Download a file from `url` into `model_dir`, using the file present if possible.
103
+
104
+ Returns the path to the downloaded file.
105
+ """
106
+ os.makedirs(model_dir, exist_ok=True)
107
+ if not file_name:
108
+ parts = urlparse(url)
109
+ file_name = os.path.basename(parts.path)
110
+ cached_file = os.path.abspath(os.path.join(model_dir, file_name))
111
+ if not os.path.exists(cached_file):
112
+ print(f'Downloading: "{url}" to {cached_file}\n')
113
+ from torch.hub import download_url_to_file
114
+ download_url_to_file(url, cached_file, progress=progress)
115
+ return cached_file
116
+
117
+
118
+ def to_lora_patch_dict(state_dict: dict) -> dict:
119
+ """ Convert raw lora state_dict to patch_dict that can be applied on
120
+ modelpatcher."""
121
+ patch_dict = {}
122
+ for k, w in state_dict.items():
123
+ model_key, patch_type, weight_index = k.split('::')
124
+ if model_key not in patch_dict:
125
+ patch_dict[model_key] = {}
126
+ if patch_type not in patch_dict[model_key]:
127
+ patch_dict[model_key][patch_type] = [None] * 16
128
+ patch_dict[model_key][patch_type][int(weight_index)] = w
129
+
130
+ patch_flat = {}
131
+ for model_key, v in patch_dict.items():
132
+ for patch_type, weight_list in v.items():
133
+ patch_flat[model_key] = (patch_type, weight_list)
134
+
135
+ return patch_flat
ComfyUI/custom_nodes/layerdiffuse/requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ diffusers>=0.25.0
2
+ opencv-python