radames commited on
Commit
a389f87
·
1 Parent(s): bb5540a
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.png filter=lfs diff=lfs merge=lfs -text
ComfyUI/comfyui_screenshot.png CHANGED

Git LFS Details

  • SHA256: 95d812d1c6696b8816800f657f238473faff7b76f36cacba51fc1cbd51d6ac28
  • Pointer size: 131 Bytes
  • Size of remote file: 119 kB
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
  title: Layerdiffusion Gradio Unofficial
3
- emoji: 🏆
4
  colorFrom: pink
5
  colorTo: blue
6
  sdk: gradio
 
1
  ---
2
  title: Layerdiffusion Gradio Unofficial
3
+ emoji: 🍰
4
  colorFrom: pink
5
  colorTo: blue
6
  sdk: gradio
app.py CHANGED
@@ -12,6 +12,7 @@ from utils import (
12
  postprocess_image,
13
  preprocess_image,
14
  downloadModels,
 
15
  )
16
 
17
  sys.path.append(os.path.dirname("./ComfyUI/"))
@@ -42,7 +43,9 @@ downloadModels()
42
 
43
  with torch.inference_mode():
44
  ckpt_load_checkpoint = CheckpointLoaderSimple().load_checkpoint
45
- ckpt = ckpt_load_checkpoint(ckpt_name="juggernautXL_v8Rundiffusion.safetensors")
 
 
46
 
47
  cliptextencode = CLIPTextEncode().encode
48
  emptylatentimage_generate = EmptyLatentImage().generate
@@ -72,6 +75,7 @@ def predict(
72
  cfg: float,
73
  denoise: float,
74
  ):
 
75
  try:
76
  with torch.inference_mode():
77
  cliptextencode_prompt = cliptextencode(
@@ -139,7 +143,7 @@ def predict(
139
  )
140
 
141
  rgb_img = tensor_to_pil(vaedecode_sample[0])
142
- return flatten([rgb_img])
143
  else:
144
  layereddiffusionapply_sample = ld_fg_apply_layered_diffusion(
145
  config="SDXL, Conv Injection", weight=1, model=ckpt[0]
@@ -177,28 +181,37 @@ def predict(
177
  mask = tensor_to_pil(mask[0])
178
  rgb_img = tensor_to_pil(vaedecode_sample[0])
179
 
180
- return flatten([rgba_img, mask])
181
  # return flatten([rgba_img, mask, rgb_img, ld_image])
182
  except Exception as e:
183
  raise gr.Error(e)
184
 
185
 
186
- examples = [["An old men sit on a chair looking at the sky"]]
187
-
188
-
189
  def flatten(l: List[List[any]]) -> List[any]:
190
  return [item for sublist in l for item in sublist]
191
 
192
 
193
- def predict_examples(prompt, negative_prompt):
 
 
194
  return predict(
195
- prompt, negative_prompt, None, False, None, 0, "euler", "normal", 20, 8.0, 1.0
 
 
 
 
 
 
 
 
 
 
196
  )
197
 
198
 
199
  css = """
200
  .gradio-container{
201
- max-width: 50rem;
202
  }
203
  """
204
  with gr.Blocks(css=css) as blocks:
@@ -223,31 +236,38 @@ with gr.Blocks(css=css) as blocks:
223
  label="Remove Background",
224
  value=False,
225
  )
226
- input_image = gr.Image(label="Input Image", type="pil")
 
 
 
227
  with gr.Accordion(open=False, label="Advanced Options"):
228
- seed = gr.Slider(
229
- label="Seed",
230
- value=0,
231
- minimum=-1,
232
- maximum=0xFFFFFFFFFFFFFFFF,
233
- step=1,
234
- randomize=True,
235
- )
 
 
 
 
236
  sampler_name = gr.Dropdown(
237
  choices=samplers.KSampler.SAMPLERS,
238
  label="Sampler Name",
239
- value=samplers.KSampler.SAMPLERS[0],
240
  )
241
  scheduler = gr.Dropdown(
242
  choices=samplers.KSampler.SCHEDULERS,
243
  label="Scheduler",
244
- value=samplers.KSampler.SCHEDULERS[0],
245
  )
246
  steps = gr.Slider(
247
- label="Steps", value=20, minimum=1, maximum=30, step=1
248
  )
249
  cfg = gr.Number(
250
- label="CFG", value=8.0, minimum=0.0, maximum=100.0, step=0.1
251
  )
252
  denoise = gr.Number(
253
  label="Denoise", value=1.0, minimum=0.0, maximum=1.0, step=0.01
@@ -269,12 +289,12 @@ with gr.Blocks(css=css) as blocks:
269
  cfg,
270
  denoise,
271
  ]
272
- outputs = [gallery]
273
 
274
  gr.Examples(
275
  fn=predict_examples,
276
  examples=examples,
277
- inputs=[prompt, negative_prompt],
278
  outputs=outputs,
279
  cache_examples=False,
280
  )
 
12
  postprocess_image,
13
  preprocess_image,
14
  downloadModels,
15
+ examples,
16
  )
17
 
18
  sys.path.append(os.path.dirname("./ComfyUI/"))
 
43
 
44
  with torch.inference_mode():
45
  ckpt_load_checkpoint = CheckpointLoaderSimple().load_checkpoint
46
+ ckpt = ckpt_load_checkpoint(
47
+ ckpt_name="juggernautXL_version6Rundiffusion.safetensors"
48
+ )
49
 
50
  cliptextencode = CLIPTextEncode().encode
51
  emptylatentimage_generate = EmptyLatentImage().generate
 
75
  cfg: float,
76
  denoise: float,
77
  ):
78
+ seed = seed if seed != -1 else np.random.randint(0, 2**63 - 1)
79
  try:
80
  with torch.inference_mode():
81
  cliptextencode_prompt = cliptextencode(
 
143
  )
144
 
145
  rgb_img = tensor_to_pil(vaedecode_sample[0])
146
+ return flatten([rgb_img]), seed
147
  else:
148
  layereddiffusionapply_sample = ld_fg_apply_layered_diffusion(
149
  config="SDXL, Conv Injection", weight=1, model=ckpt[0]
 
181
  mask = tensor_to_pil(mask[0])
182
  rgb_img = tensor_to_pil(vaedecode_sample[0])
183
 
184
+ return flatten([rgba_img, mask]), seed
185
  # return flatten([rgba_img, mask, rgb_img, ld_image])
186
  except Exception as e:
187
  raise gr.Error(e)
188
 
189
 
 
 
 
190
  def flatten(l: List[List[any]]) -> List[any]:
191
  return [item for sublist in l for item in sublist]
192
 
193
 
194
+ def predict_examples(
195
+ prompt, negative_prompt, input_image=None, remove_bg=False, cond_mode=None
196
+ ):
197
  return predict(
198
+ prompt,
199
+ negative_prompt,
200
+ input_image,
201
+ remove_bg,
202
+ cond_mode,
203
+ 0,
204
+ "euler",
205
+ "normal",
206
+ 20,
207
+ 8.0,
208
+ 1.0,
209
  )
210
 
211
 
212
  css = """
213
  .gradio-container{
214
+ max-width: 85rem !important;
215
  }
216
  """
217
  with gr.Blocks(css=css) as blocks:
 
236
  label="Remove Background",
237
  value=False,
238
  )
239
+ input_image = gr.Image(
240
+ label="Input Image",
241
+ type="pil",
242
+ )
243
  with gr.Accordion(open=False, label="Advanced Options"):
244
+ with gr.Group():
245
+ with gr.Row():
246
+ seed = gr.Slider(
247
+ label="Seed",
248
+ value=-1,
249
+ minimum=-1,
250
+ maximum=0xFFFFFFFFFFFFFFFF,
251
+ step=1,
252
+ )
253
+ curr_seed = gr.Number(
254
+ value=-1, interactive=False, scale=0, label=" "
255
+ )
256
  sampler_name = gr.Dropdown(
257
  choices=samplers.KSampler.SAMPLERS,
258
  label="Sampler Name",
259
+ value="dpmpp_2m_sde",
260
  )
261
  scheduler = gr.Dropdown(
262
  choices=samplers.KSampler.SCHEDULERS,
263
  label="Scheduler",
264
+ value="karras",
265
  )
266
  steps = gr.Slider(
267
+ label="Steps", value=20, minimum=1, maximum=50, step=1
268
  )
269
  cfg = gr.Number(
270
+ label="CFG", value=5.0, minimum=0.0, maximum=100.0, step=0.1
271
  )
272
  denoise = gr.Number(
273
  label="Denoise", value=1.0, minimum=0.0, maximum=1.0, step=0.01
 
289
  cfg,
290
  denoise,
291
  ]
292
+ outputs = [gallery, curr_seed]
293
 
294
  gr.Examples(
295
  fn=predict_examples,
296
  examples=examples,
297
+ inputs=[prompt, negative_prompt, input_image, remove_bg, cond_mode],
298
  outputs=outputs,
299
  cache_examples=False,
300
  )
examples/bg.png ADDED

Git LFS Details

  • SHA256: 4eb5206fe6e0dad3bda5c3777e85a53e39d23ce238cc313e7825c8223a710a6e
  • Pointer size: 132 Bytes
  • Size of remote file: 1.74 MB
examples/cat.png ADDED

Git LFS Details

  • SHA256: 6dd4a6fb2fe52c96cc987fd8e550ddf2e04905c40fa2fa9fa5499434c7092b77
  • Pointer size: 132 Bytes
  • Size of remote file: 1.29 MB
examples/julien.png ADDED

Git LFS Details

  • SHA256: 43c9373876f82b5f486807233f291d507e1d1064e65bfaf6b7a8fd60db74b971
  • Pointer size: 131 Bytes
  • Size of remote file: 222 kB
examples/lecun.png ADDED

Git LFS Details

  • SHA256: 65dfc25739ab3b4c59fda8283aacd96e0bd813446f3a5a2b86e390a42bb35821
  • Pointer size: 131 Bytes
  • Size of remote file: 275 kB
examples/old_jump.png ADDED

Git LFS Details

  • SHA256: 4f7e551ebcc2ce65571718a57de2bb9d363ff14660fceca45a2d5280b0ea6c35
  • Pointer size: 131 Bytes
  • Size of remote file: 699 kB
utils.py CHANGED
@@ -20,25 +20,26 @@ def tensor_to_pil(images: torch.Tensor | List[torch.Tensor]) -> List[Image.Image
20
  return imgs
21
 
22
 
23
- def pad_image(input_image):
24
- pad_w, pad_h = (
25
- np.max(((2, 2), np.ceil(np.array(input_image.size) / 64).astype(int)), axis=0)
26
- * 64
27
- - input_image.size
28
- )
29
- im_padded = Image.fromarray(
30
- np.pad(np.array(input_image), ((0, pad_h), (0, pad_w), (0, 0)), mode="edge")
31
- )
32
- w, h = im_padded.size
33
- if w == h:
34
  return im_padded
35
- elif w > h:
36
- new_image = Image.new(im_padded.mode, (w, w), (0, 0, 0))
37
- new_image.paste(im_padded, (0, (w - h) // 2))
 
38
  return new_image
39
  else:
40
- new_image = Image.new(im_padded.mode, (h, h), (0, 0, 0))
41
- new_image.paste(im_padded, ((h - w) // 2, 0))
 
42
  return new_image
43
 
44
 
@@ -95,10 +96,14 @@ def postprocess_image(result: torch.Tensor, im_size: list) -> np.ndarray:
95
 
96
  def downloadModels():
97
  MODEL_PATH = hf_hub_download(
98
- repo_id="lllyasviel/fav_models",
99
- subfolder="fav",
100
- filename="juggernautXL_v8Rundiffusion.safetensors",
101
  )
 
 
 
 
 
102
  LAYERS_PATH = snapshot_download(
103
  repo_id="LayerDiffusion/layerdiffusion-v1", allow_patterns="*.safetensors"
104
  )
@@ -112,3 +117,35 @@ def downloadModels():
112
  )
113
  if not model_target_path.exists():
114
  os.symlink(MODEL_PATH, model_target_path)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
  return imgs
21
 
22
 
23
+ def pad_image(input_image, background_color=(0, 0, 0)):
24
+ w, h = input_image.size
25
+ pad_w = (64 - w % 64) % 64
26
+ pad_h = (64 - h % 64) % 64
27
+
28
+ new_size = (w + pad_w, h + pad_h)
29
+ im_padded = Image.new(input_image.mode, new_size, background_color)
30
+ im_padded.paste(input_image, (pad_w // 2, pad_h // 2))
31
+
32
+ if im_padded.size[0] == im_padded.size[1]:
 
33
  return im_padded
34
+ elif im_padded.size[0] > im_padded.size[1]:
35
+ new_size = (im_padded.size[0], im_padded.size[0])
36
+ new_image = Image.new(im_padded.mode, new_size, background_color)
37
+ new_image.paste(im_padded, (0, (new_size[1] - im_padded.size[1]) // 2))
38
  return new_image
39
  else:
40
+ new_size = (im_padded.size[1], im_padded.size[1])
41
+ new_image = Image.new(im_padded.mode, new_size, background_color)
42
+ new_image.paste(im_padded, ((new_size[0] - im_padded.size[0]) // 2, 0))
43
  return new_image
44
 
45
 
 
96
 
97
  def downloadModels():
98
  MODEL_PATH = hf_hub_download(
99
+ repo_id="RunDiffusion/Juggernaut-XL-v6",
100
+ filename="juggernautXL_version6Rundiffusion.safetensors",
 
101
  )
102
+ # MODEL_PATH = hf_hub_download(
103
+ # repo_id="lllyasviel/fav_models",
104
+ # subfolder="fav",
105
+ # filename="juggernautXL_v8Rundiffusion.safetensors",
106
+ # )
107
  LAYERS_PATH = snapshot_download(
108
  repo_id="LayerDiffusion/layerdiffusion-v1", allow_patterns="*.safetensors"
109
  )
 
117
  )
118
  if not model_target_path.exists():
119
  os.symlink(MODEL_PATH, model_target_path)
120
+
121
+
122
+ examples = [
123
+ [
124
+ "An old men sit on a chair looking at the sky",
125
+ "ugly distorted image, low quality, text, bad, not good ,watermark",
126
+ None,
127
+ False,
128
+ None,
129
+ ],
130
+ [
131
+ "A beautiful toucan bird flying in the sky",
132
+ "ugly distorted image, low quality, text, bad, not good ,watermark",
133
+ "./examples/bg.png",
134
+ False,
135
+ "SDXL, Background",
136
+ ],
137
+ [
138
+ "A men watching a concert",
139
+ "ugly distorted image, low quality, text, bad, not good ,watermark",
140
+ "./examples/lecun.png",
141
+ True,
142
+ "SDXL, Foreground",
143
+ ],
144
+ [
145
+ "A men watching a concert",
146
+ "ugly distorted image, low quality, text, bad, not good ,watermark",
147
+ "./examples/julien.png",
148
+ True,
149
+ "SDXL, Foreground",
150
+ ],
151
+ ]