iexamples
Browse files- .gitattributes +1 -0
- ComfyUI/comfyui_screenshot.png +0 -0
- README.md +1 -1
- app.py +44 -24
- examples/bg.png +3 -0
- examples/cat.png +3 -0
- examples/julien.png +3 -0
- examples/lecun.png +3 -0
- examples/old_jump.png +3 -0
- utils.py +56 -19
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
ComfyUI/comfyui_screenshot.png
CHANGED
Git LFS Details
|
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
title: Layerdiffusion Gradio Unofficial
|
3 |
-
emoji:
|
4 |
colorFrom: pink
|
5 |
colorTo: blue
|
6 |
sdk: gradio
|
|
|
1 |
---
|
2 |
title: Layerdiffusion Gradio Unofficial
|
3 |
+
emoji: 🍰
|
4 |
colorFrom: pink
|
5 |
colorTo: blue
|
6 |
sdk: gradio
|
app.py
CHANGED
@@ -12,6 +12,7 @@ from utils import (
|
|
12 |
postprocess_image,
|
13 |
preprocess_image,
|
14 |
downloadModels,
|
|
|
15 |
)
|
16 |
|
17 |
sys.path.append(os.path.dirname("./ComfyUI/"))
|
@@ -42,7 +43,9 @@ downloadModels()
|
|
42 |
|
43 |
with torch.inference_mode():
|
44 |
ckpt_load_checkpoint = CheckpointLoaderSimple().load_checkpoint
|
45 |
-
ckpt = ckpt_load_checkpoint(
|
|
|
|
|
46 |
|
47 |
cliptextencode = CLIPTextEncode().encode
|
48 |
emptylatentimage_generate = EmptyLatentImage().generate
|
@@ -72,6 +75,7 @@ def predict(
|
|
72 |
cfg: float,
|
73 |
denoise: float,
|
74 |
):
|
|
|
75 |
try:
|
76 |
with torch.inference_mode():
|
77 |
cliptextencode_prompt = cliptextencode(
|
@@ -139,7 +143,7 @@ def predict(
|
|
139 |
)
|
140 |
|
141 |
rgb_img = tensor_to_pil(vaedecode_sample[0])
|
142 |
-
return flatten([rgb_img])
|
143 |
else:
|
144 |
layereddiffusionapply_sample = ld_fg_apply_layered_diffusion(
|
145 |
config="SDXL, Conv Injection", weight=1, model=ckpt[0]
|
@@ -177,28 +181,37 @@ def predict(
|
|
177 |
mask = tensor_to_pil(mask[0])
|
178 |
rgb_img = tensor_to_pil(vaedecode_sample[0])
|
179 |
|
180 |
-
return flatten([rgba_img, mask])
|
181 |
# return flatten([rgba_img, mask, rgb_img, ld_image])
|
182 |
except Exception as e:
|
183 |
raise gr.Error(e)
|
184 |
|
185 |
|
186 |
-
examples = [["An old men sit on a chair looking at the sky"]]
|
187 |
-
|
188 |
-
|
189 |
def flatten(l: List[List[any]]) -> List[any]:
|
190 |
return [item for sublist in l for item in sublist]
|
191 |
|
192 |
|
193 |
-
def predict_examples(
|
|
|
|
|
194 |
return predict(
|
195 |
-
prompt,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
)
|
197 |
|
198 |
|
199 |
css = """
|
200 |
.gradio-container{
|
201 |
-
max-width:
|
202 |
}
|
203 |
"""
|
204 |
with gr.Blocks(css=css) as blocks:
|
@@ -223,31 +236,38 @@ with gr.Blocks(css=css) as blocks:
|
|
223 |
label="Remove Background",
|
224 |
value=False,
|
225 |
)
|
226 |
-
input_image = gr.Image(
|
|
|
|
|
|
|
227 |
with gr.Accordion(open=False, label="Advanced Options"):
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
|
|
|
|
|
|
|
|
236 |
sampler_name = gr.Dropdown(
|
237 |
choices=samplers.KSampler.SAMPLERS,
|
238 |
label="Sampler Name",
|
239 |
-
value=
|
240 |
)
|
241 |
scheduler = gr.Dropdown(
|
242 |
choices=samplers.KSampler.SCHEDULERS,
|
243 |
label="Scheduler",
|
244 |
-
value=
|
245 |
)
|
246 |
steps = gr.Slider(
|
247 |
-
label="Steps", value=20, minimum=1, maximum=
|
248 |
)
|
249 |
cfg = gr.Number(
|
250 |
-
label="CFG", value=
|
251 |
)
|
252 |
denoise = gr.Number(
|
253 |
label="Denoise", value=1.0, minimum=0.0, maximum=1.0, step=0.01
|
@@ -269,12 +289,12 @@ with gr.Blocks(css=css) as blocks:
|
|
269 |
cfg,
|
270 |
denoise,
|
271 |
]
|
272 |
-
outputs = [gallery]
|
273 |
|
274 |
gr.Examples(
|
275 |
fn=predict_examples,
|
276 |
examples=examples,
|
277 |
-
inputs=[prompt, negative_prompt],
|
278 |
outputs=outputs,
|
279 |
cache_examples=False,
|
280 |
)
|
|
|
12 |
postprocess_image,
|
13 |
preprocess_image,
|
14 |
downloadModels,
|
15 |
+
examples,
|
16 |
)
|
17 |
|
18 |
sys.path.append(os.path.dirname("./ComfyUI/"))
|
|
|
43 |
|
44 |
with torch.inference_mode():
|
45 |
ckpt_load_checkpoint = CheckpointLoaderSimple().load_checkpoint
|
46 |
+
ckpt = ckpt_load_checkpoint(
|
47 |
+
ckpt_name="juggernautXL_version6Rundiffusion.safetensors"
|
48 |
+
)
|
49 |
|
50 |
cliptextencode = CLIPTextEncode().encode
|
51 |
emptylatentimage_generate = EmptyLatentImage().generate
|
|
|
75 |
cfg: float,
|
76 |
denoise: float,
|
77 |
):
|
78 |
+
seed = seed if seed != -1 else np.random.randint(0, 2**63 - 1)
|
79 |
try:
|
80 |
with torch.inference_mode():
|
81 |
cliptextencode_prompt = cliptextencode(
|
|
|
143 |
)
|
144 |
|
145 |
rgb_img = tensor_to_pil(vaedecode_sample[0])
|
146 |
+
return flatten([rgb_img]), seed
|
147 |
else:
|
148 |
layereddiffusionapply_sample = ld_fg_apply_layered_diffusion(
|
149 |
config="SDXL, Conv Injection", weight=1, model=ckpt[0]
|
|
|
181 |
mask = tensor_to_pil(mask[0])
|
182 |
rgb_img = tensor_to_pil(vaedecode_sample[0])
|
183 |
|
184 |
+
return flatten([rgba_img, mask]), seed
|
185 |
# return flatten([rgba_img, mask, rgb_img, ld_image])
|
186 |
except Exception as e:
|
187 |
raise gr.Error(e)
|
188 |
|
189 |
|
|
|
|
|
|
|
190 |
def flatten(l: List[List[any]]) -> List[any]:
|
191 |
return [item for sublist in l for item in sublist]
|
192 |
|
193 |
|
194 |
+
def predict_examples(
|
195 |
+
prompt, negative_prompt, input_image=None, remove_bg=False, cond_mode=None
|
196 |
+
):
|
197 |
return predict(
|
198 |
+
prompt,
|
199 |
+
negative_prompt,
|
200 |
+
input_image,
|
201 |
+
remove_bg,
|
202 |
+
cond_mode,
|
203 |
+
0,
|
204 |
+
"euler",
|
205 |
+
"normal",
|
206 |
+
20,
|
207 |
+
8.0,
|
208 |
+
1.0,
|
209 |
)
|
210 |
|
211 |
|
212 |
css = """
|
213 |
.gradio-container{
|
214 |
+
max-width: 85rem !important;
|
215 |
}
|
216 |
"""
|
217 |
with gr.Blocks(css=css) as blocks:
|
|
|
236 |
label="Remove Background",
|
237 |
value=False,
|
238 |
)
|
239 |
+
input_image = gr.Image(
|
240 |
+
label="Input Image",
|
241 |
+
type="pil",
|
242 |
+
)
|
243 |
with gr.Accordion(open=False, label="Advanced Options"):
|
244 |
+
with gr.Group():
|
245 |
+
with gr.Row():
|
246 |
+
seed = gr.Slider(
|
247 |
+
label="Seed",
|
248 |
+
value=-1,
|
249 |
+
minimum=-1,
|
250 |
+
maximum=0xFFFFFFFFFFFFFFFF,
|
251 |
+
step=1,
|
252 |
+
)
|
253 |
+
curr_seed = gr.Number(
|
254 |
+
value=-1, interactive=False, scale=0, label=" "
|
255 |
+
)
|
256 |
sampler_name = gr.Dropdown(
|
257 |
choices=samplers.KSampler.SAMPLERS,
|
258 |
label="Sampler Name",
|
259 |
+
value="dpmpp_2m_sde",
|
260 |
)
|
261 |
scheduler = gr.Dropdown(
|
262 |
choices=samplers.KSampler.SCHEDULERS,
|
263 |
label="Scheduler",
|
264 |
+
value="karras",
|
265 |
)
|
266 |
steps = gr.Slider(
|
267 |
+
label="Steps", value=20, minimum=1, maximum=50, step=1
|
268 |
)
|
269 |
cfg = gr.Number(
|
270 |
+
label="CFG", value=5.0, minimum=0.0, maximum=100.0, step=0.1
|
271 |
)
|
272 |
denoise = gr.Number(
|
273 |
label="Denoise", value=1.0, minimum=0.0, maximum=1.0, step=0.01
|
|
|
289 |
cfg,
|
290 |
denoise,
|
291 |
]
|
292 |
+
outputs = [gallery, curr_seed]
|
293 |
|
294 |
gr.Examples(
|
295 |
fn=predict_examples,
|
296 |
examples=examples,
|
297 |
+
inputs=[prompt, negative_prompt, input_image, remove_bg, cond_mode],
|
298 |
outputs=outputs,
|
299 |
cache_examples=False,
|
300 |
)
|
examples/bg.png
ADDED
Git LFS Details
|
examples/cat.png
ADDED
Git LFS Details
|
examples/julien.png
ADDED
Git LFS Details
|
examples/lecun.png
ADDED
Git LFS Details
|
examples/old_jump.png
ADDED
Git LFS Details
|
utils.py
CHANGED
@@ -20,25 +20,26 @@ def tensor_to_pil(images: torch.Tensor | List[torch.Tensor]) -> List[Image.Image
|
|
20 |
return imgs
|
21 |
|
22 |
|
23 |
-
def pad_image(input_image):
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
)
|
29 |
-
im_padded = Image.
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
if w == h:
|
34 |
return im_padded
|
35 |
-
elif
|
36 |
-
|
37 |
-
new_image.
|
|
|
38 |
return new_image
|
39 |
else:
|
40 |
-
|
41 |
-
new_image.
|
|
|
42 |
return new_image
|
43 |
|
44 |
|
@@ -95,10 +96,14 @@ def postprocess_image(result: torch.Tensor, im_size: list) -> np.ndarray:
|
|
95 |
|
96 |
def downloadModels():
|
97 |
MODEL_PATH = hf_hub_download(
|
98 |
-
repo_id="
|
99 |
-
|
100 |
-
filename="juggernautXL_v8Rundiffusion.safetensors",
|
101 |
)
|
|
|
|
|
|
|
|
|
|
|
102 |
LAYERS_PATH = snapshot_download(
|
103 |
repo_id="LayerDiffusion/layerdiffusion-v1", allow_patterns="*.safetensors"
|
104 |
)
|
@@ -112,3 +117,35 @@ def downloadModels():
|
|
112 |
)
|
113 |
if not model_target_path.exists():
|
114 |
os.symlink(MODEL_PATH, model_target_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
return imgs
|
21 |
|
22 |
|
23 |
+
def pad_image(input_image, background_color=(0, 0, 0)):
|
24 |
+
w, h = input_image.size
|
25 |
+
pad_w = (64 - w % 64) % 64
|
26 |
+
pad_h = (64 - h % 64) % 64
|
27 |
+
|
28 |
+
new_size = (w + pad_w, h + pad_h)
|
29 |
+
im_padded = Image.new(input_image.mode, new_size, background_color)
|
30 |
+
im_padded.paste(input_image, (pad_w // 2, pad_h // 2))
|
31 |
+
|
32 |
+
if im_padded.size[0] == im_padded.size[1]:
|
|
|
33 |
return im_padded
|
34 |
+
elif im_padded.size[0] > im_padded.size[1]:
|
35 |
+
new_size = (im_padded.size[0], im_padded.size[0])
|
36 |
+
new_image = Image.new(im_padded.mode, new_size, background_color)
|
37 |
+
new_image.paste(im_padded, (0, (new_size[1] - im_padded.size[1]) // 2))
|
38 |
return new_image
|
39 |
else:
|
40 |
+
new_size = (im_padded.size[1], im_padded.size[1])
|
41 |
+
new_image = Image.new(im_padded.mode, new_size, background_color)
|
42 |
+
new_image.paste(im_padded, ((new_size[0] - im_padded.size[0]) // 2, 0))
|
43 |
return new_image
|
44 |
|
45 |
|
|
|
96 |
|
97 |
def downloadModels():
|
98 |
MODEL_PATH = hf_hub_download(
|
99 |
+
repo_id="RunDiffusion/Juggernaut-XL-v6",
|
100 |
+
filename="juggernautXL_version6Rundiffusion.safetensors",
|
|
|
101 |
)
|
102 |
+
# MODEL_PATH = hf_hub_download(
|
103 |
+
# repo_id="lllyasviel/fav_models",
|
104 |
+
# subfolder="fav",
|
105 |
+
# filename="juggernautXL_v8Rundiffusion.safetensors",
|
106 |
+
# )
|
107 |
LAYERS_PATH = snapshot_download(
|
108 |
repo_id="LayerDiffusion/layerdiffusion-v1", allow_patterns="*.safetensors"
|
109 |
)
|
|
|
117 |
)
|
118 |
if not model_target_path.exists():
|
119 |
os.symlink(MODEL_PATH, model_target_path)
|
120 |
+
|
121 |
+
|
122 |
+
examples = [
|
123 |
+
[
|
124 |
+
"An old men sit on a chair looking at the sky",
|
125 |
+
"ugly distorted image, low quality, text, bad, not good ,watermark",
|
126 |
+
None,
|
127 |
+
False,
|
128 |
+
None,
|
129 |
+
],
|
130 |
+
[
|
131 |
+
"A beautiful toucan bird flying in the sky",
|
132 |
+
"ugly distorted image, low quality, text, bad, not good ,watermark",
|
133 |
+
"./examples/bg.png",
|
134 |
+
False,
|
135 |
+
"SDXL, Background",
|
136 |
+
],
|
137 |
+
[
|
138 |
+
"A men watching a concert",
|
139 |
+
"ugly distorted image, low quality, text, bad, not good ,watermark",
|
140 |
+
"./examples/lecun.png",
|
141 |
+
True,
|
142 |
+
"SDXL, Foreground",
|
143 |
+
],
|
144 |
+
[
|
145 |
+
"A men watching a concert",
|
146 |
+
"ugly distorted image, low quality, text, bad, not good ,watermark",
|
147 |
+
"./examples/julien.png",
|
148 |
+
True,
|
149 |
+
"SDXL, Foreground",
|
150 |
+
],
|
151 |
+
]
|