Spaces:
Runtime error
Runtime error
""" | |
Copyright (c) Meta Platforms, Inc. and affiliates. | |
All rights reserved. | |
This source code is licensed under the license found in the | |
LICENSE file in the root directory of this source tree. | |
""" | |
from tempfile import NamedTemporaryFile | |
import torch | |
import gradio as gr | |
from share_btn import community_icon_html, loading_icon_html, share_js, css | |
from audiocraft.data.audio_utils import convert_audio | |
from audiocraft.data.audio import audio_write | |
from audiocraft.models import MusicGen | |
MODEL = None | |
def load_model(): | |
print("Loading model") | |
return MusicGen.get_pretrained("melody") | |
def predict(texts, melodies): | |
global MODEL | |
if MODEL is None: | |
MODEL = load_model() | |
duration = 12 | |
MODEL.set_generation_params(duration=duration) | |
print(texts, melodies) | |
processed_melodies = [] | |
target_sr = 32000 | |
target_ac = 1 | |
for melody in melodies: | |
if melody is None: | |
processed_melodies.append(None) | |
else: | |
sr, melody = ( | |
melody[0], | |
torch.from_numpy(melody[1]).to(MODEL.device).float().t(), | |
) | |
if melody.dim() == 1: | |
melody = melody[None] | |
melody = melody[..., : int(sr * duration)] | |
melody = convert_audio(melody, sr, target_sr, target_ac) | |
processed_melodies.append(melody) | |
outputs = MODEL.generate_with_chroma( | |
descriptions=texts, | |
melody_wavs=processed_melodies, | |
melody_sample_rate=target_sr, | |
progress=False, | |
) | |
outputs = outputs.detach().cpu().float() | |
out_files = [] | |
for output in outputs: | |
with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file: | |
audio_write( | |
file.name, | |
output, | |
MODEL.sample_rate, | |
strategy="loudness", | |
loudness_headroom_db=16, | |
loudness_compressor=True, | |
add_suffix=False, | |
) | |
waveform_video = gr.make_waveform(file.name) | |
out_files.append(waveform_video) | |
return [out_files, melodies] | |
def toggle(choice): | |
if choice == "mic": | |
return gr.update(source="microphone", value=None, label="Microphone") | |
else: | |
return gr.update(source="upload", value=None, label="File") | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown( | |
""" | |
# MusicGen | |
This is the demo for [MusicGen](https://github.com/facebookresearch/audiocraft), a simple and controllable model for music generation | |
presented at: ["Simple and Controllable Music Generation"](https://huggingface.co/papers/2306.05284). | |
<br/> | |
<a href="https://huggingface.co/spaces/musicgen/MusicGen?duplicate=true" style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank"> | |
<img style="margin-bottom: 0em;display: inline;margin-top: -.25em;" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> | |
for longer sequences, more control and no queue.</p> | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
text = gr.Text( | |
label="Describe your music", | |
lines=2, | |
interactive=True, | |
elem_id="text-input", | |
) | |
with gr.Column(): | |
radio = gr.Radio( | |
["file", "mic"], | |
value="file", | |
label="Melody Condition (optional) File or Mic", | |
) | |
melody = gr.Audio( | |
source="upload", | |
type="numpy", | |
label="File", | |
interactive=True, | |
elem_id="melody-input", | |
) | |
with gr.Row(): | |
submit = gr.Button("Generate") | |
with gr.Column(): | |
output = gr.Video(label="Generated Music", elem_id="generated-video") | |
output_melody = gr.Audio(label="Melody ", elem_id="melody-output") | |
with gr.Row(visible=False) as share_row: | |
with gr.Group(elem_id="share-btn-container"): | |
community_icon = gr.HTML(community_icon_html) | |
loading_icon = gr.HTML(loading_icon_html) | |
share_button = gr.Button("Share to community", elem_id="share-btn") | |
share_button.click(None, [], [], _js=share_js) | |
submit.click( | |
lambda x: gr.update(visible=False), | |
None, | |
[share_row], | |
queue=False, | |
show_progress=False, | |
).then( | |
predict, | |
inputs=[text, melody], | |
outputs=[output, output_melody], | |
batch=True, | |
max_batch_size=12, | |
).then( | |
lambda x: gr.update(visible=True), | |
None, | |
[share_row], | |
queue=False, | |
show_progress=False, | |
) | |
radio.change(toggle, radio, [melody], queue=False, show_progress=False) | |
gr.Examples( | |
fn=predict, | |
examples=[ | |
[ | |
"An 80s driving pop song with heavy drums and synth pads in the background", | |
"./assets/bach.mp3", | |
], | |
[ | |
"A cheerful country song with acoustic guitars", | |
"./assets/bolero_ravel.mp3", | |
], | |
[ | |
"90s rock song with electric guitar and heavy drums", | |
None, | |
], | |
[ | |
"a light and cheerly EDM track, with syncopated drums, aery pads, and strong emotions bpm: 130", | |
"./assets/bach.mp3", | |
], | |
[ | |
"lofi slow bpm electro chill with organic samples", | |
None, | |
], | |
], | |
inputs=[text, melody], | |
outputs=[output], | |
) | |
gr.Markdown( | |
""" | |
### More details | |
The model will generate 12 seconds of audio based on the description you provided. | |
You can optionaly provide a reference audio from which a broad melody will be extracted. | |
The model will then try to follow both the description and melody provided. | |
All samples are generated with the `melody` model. | |
You can also use your own GPU or a Google Colab by following the instructions on our repo. | |
See [github.com/facebookresearch/audiocraft](https://github.com/facebookresearch/audiocraft) | |
for more details. | |
""" | |
) | |
demo.queue(max_size=60).launch() | |