""" Copyright (c) Meta Platforms, Inc. and affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. """ from tempfile import NamedTemporaryFile import argparse import torch import torchaudio import gradio as gr import os from audiocraft.models import MusicGen from audiocraft.data.audio import audio_write from share_btn import community_icon_html, loading_icon_html, share_js, css MODEL = None def load_model(version): print("Loading model", version) return MusicGen.get_pretrained(version) def predict( text, melody_input, duration=30, continuation_start=0, continuation_end=30, topk=250, topp=0, temperature=1, cfg_coef=3, ): global MODEL topk = int(topk) if MODEL is None: MODEL = load_model("melody") if melody_input is None: raise gr.Error("Please upload a melody to continue!") if duration > MODEL.lm.cfg.dataset.segment_duration: raise gr.Error("MusicGen currently supports durations of up to 30 seconds!") if continuation_end < continuation_start: raise gr.Error("The end time must be greater than the start time!") MODEL.set_generation_params( use_sampling=True, top_k=topk, top_p=topp, temperature=temperature, cfg_coef=cfg_coef, duration=duration, ) if melody_input: melody, sr = torchaudio.load(melody_input) # sr, melody = melody_input[0], torch.from_numpy(melody_input[1]).to(MODEL.device).float().t().unsqueeze(0) if melody.dim() == 2: melody = melody[None] print("\nGenerating continuation\n") melody_wavform = melody[ ..., int(sr * continuation_start) : int(sr * continuation_end) ] melody_duration = melody_wavform.shape[-1] / sr if duration + melody_duration > MODEL.lm.cfg.dataset.segment_duration: raise gr.Error("Duration + continuation duration must be <= 30 seconds") output = MODEL.generate_continuation( prompt=melody_wavform, prompt_sample_rate=sr, descriptions=[text], progress=True, ) output = output.detach().cpu().float()[0] with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file: audio_write( file.name, output, MODEL.sample_rate, strategy="loudness", loudness_headroom_db=16, loudness_compressor=True, add_suffix=False, ) waveform_video = gr.make_waveform(file.name) return ( waveform_video, (sr, melody_wavform.unsqueeze(0).numpy()) if melody_input else None, ) def ui(**kwargs): def toggle(choice): if choice == "mic": return gr.update(source="microphone", value=None, label="Microphone") else: return gr.update(source="upload", value=None, label="File") def check_melody_length(melody_input): if not melody_input: return gr.update(maximum=0, value=0), gr.update(maximum=0, value=0) melody, sr = torchaudio.load(melody_input) audio_length = melody.shape[-1] / sr if melody.dim() == 2: melody = melody[None] return gr.update(maximum=audio_length, value=0), gr.update( maximum=audio_length, value=audio_length ) def preview_melody_cut(melody_input, continuation_start, continuation_end): if not melody_input: return gr.update(maximum=0, value=0), gr.update(maximum=0, value=0) melody, sr = torchaudio.load(melody_input) audio_length = melody.shape[-1] / sr if melody.dim() == 2: melody = melody[None] if continuation_end < continuation_start: raise gr.Error("The end time must be greater than the start time!") if continuation_start < 0 or continuation_end > audio_length: raise gr.Error("The continuation settings must be within the audio length!") print("cutting", int(sr * continuation_start), int(sr * continuation_end)) prompt_waveform = melody[ ..., int(sr * continuation_start) : int(sr * continuation_end) ] return (sr, prompt_waveform.unsqueeze(0).numpy()) with gr.Blocks(css=css) as interface: gr.Markdown( """ # MusicGen Continuation This a [MusicGen](https://github.com/facebookresearch/audiocraft), a simple and controllable model for music generation presented at: ["Simple and Controllable Music Generation"](https://huggingface.co/papers/2306.05284) This Spaces only does melody continuation, you can try other features [here](https://huggingface.co/spaces/facebook/MusicGen) """ ) gr.Markdown( """ Duplicate Space to use it privately """ ) with gr.Row(): with gr.Column(): with gr.Row(): text = gr.Text( label="Describe your music", lines=2, interactive=True, elem_id="text-input", ) with gr.Column(): radio = gr.Radio( ["file", "mic"], value="file", label="Melody Inital Condition File or Mic", info="Make sure the audio is no longer than total generation duration which is max 30 seconds, you can trim the audio in the next section", ) melody = gr.Audio( source="upload", type="filepath", label="File", interactive=True, elem_id="melody-input", ) with gr.Row(): submit = gr.Button("Submit") with gr.Row(): duration = gr.Slider( minimum=1, maximum=30, value=10, label="Total Generation Duration", interactive=True, ) with gr.Accordion(label="Input Melody Trimming (optional)", open=False): with gr.Row(): continuation_start = gr.Slider( minimum=0, maximum=30, step=0.01, value=0, label="melody cut start", interactive=True, ) continuation_end = gr.Slider( minimum=0, maximum=30, step=0.01, value=0, label="melody cut end", interactive=True, ) cut_btn = gr.Button("Cut Melody").style(full_width=False) with gr.Row(): preview_cut = gr.Audio( type="numpy", label="Cut Preview", ) with gr.Accordion(label="Advanced Settings", open=False): with gr.Row(): topk = gr.Number(label="Top-k", value=250, interactive=True) topp = gr.Number(label="Top-p", value=0, interactive=True) temperature = gr.Number( label="Temperature", value=1.0, interactive=True ) cfg_coef = gr.Number( label="Classifier Free Guidance", value=3.0, interactive=True, ) with gr.Column(): output = gr.Video(label="Generated Music", elem_id="generated-video") output_melody = gr.Audio(label="Melody ", elem_id="melody-output") with gr.Row(visible=False) as share_row: with gr.Group(elem_id="share-btn-container"): community_icon = gr.HTML(community_icon_html) loading_icon = gr.HTML(loading_icon_html) share_button = gr.Button( "Share to community", elem_id="share-btn" ) share_button.click(None, [], [], _js=share_js) melody.change( check_melody_length, melody, [continuation_start, continuation_end], queue=False, ) cut_btn.click( preview_melody_cut, [melody, continuation_start, continuation_end], preview_cut, queue=False, ) submit.click( lambda x: gr.update(visible=False), None, [share_row], queue=False, show_progress=False, ).then( predict, inputs=[ text, melody, duration, continuation_start, continuation_end, topk, topp, temperature, cfg_coef, ], outputs=[output, output_melody], ).then( lambda x: gr.update(visible=True), None, [share_row], queue=False, show_progress=False, ) radio.change(toggle, radio, [melody], queue=False, show_progress=False) examples = gr.Examples( fn=predict, examples=[ [ "An 80s driving pop song with heavy drums and synth pads in the background", "./assets/bach.mp3", 25, 0, 5, ], [ "A cheerful country song with acoustic guitars", "./assets/bolero_ravel.mp3", 25, 0, 5, ], [ "90s rock song with electric guitar and heavy drums", "./assets/bach.mp3", 25, 0, 5, ], [ "a light and cheerly EDM track, with syncopated drums, aery pads, and strong emotions", "./assets/bach.mp3", 25, 0, 5, ], [ "lofi slow bpm electro chill with organic samples", "./assets/bolero_ravel.mp3", 25, 0, 5, ], ], inputs=[text, melody, duration, continuation_start, continuation_end], outputs=[output], ) gr.Markdown( """ ### More details The model will generate a short music extract based on the description you provided. You can generate up to 30 seconds of audio. We present 4 model variations: 1. Melody -- a music generation model capable of generating music condition on text and melody inputs. **Note**, you can also use text only. 2. Small -- a 300M transformer decoder conditioned on text only. 3. Medium -- a 1.5B transformer decoder conditioned on text only. 4. Large -- a 3.3B transformer decoder conditioned on text only (might OOM for the longest sequences.) When using `melody`, ou can optionaly provide a reference audio from which a broad melody will be extracted. The model will then try to follow both the description and melody provided. You can also use your own GPU or a Google Colab by following the instructions on our repo. See [github.com/facebookresearch/audiocraft](https://github.com/facebookresearch/audiocraft) for more details. """ ) # Show the interface launch_kwargs = {} username = kwargs.get("username") password = kwargs.get("password") server_port = kwargs.get("server_port", 0) inbrowser = kwargs.get("inbrowser", False) share = kwargs.get("share", False) server_name = kwargs.get("listen") launch_kwargs["server_name"] = server_name if username and password: launch_kwargs["auth"] = (username, password) if server_port > 0: launch_kwargs["server_port"] = server_port if inbrowser: launch_kwargs["inbrowser"] = inbrowser if share: launch_kwargs["share"] = share interface.queue().launch(**launch_kwargs, max_threads=1) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--listen", type=str, default="0.0.0.0", help="IP to listen on for connections to Gradio", ) parser.add_argument( "--username", type=str, default="", help="Username for authentication" ) parser.add_argument( "--password", type=str, default="", help="Password for authentication" ) parser.add_argument( "--server_port", type=int, default=7860, help="Port to run the server listener on", ) parser.add_argument("--inbrowser", action="store_true", help="Open in browser") parser.add_argument("--share", action="store_true", help="Share the gradio UI") args = parser.parse_args() ui( username=args.username, password=args.password, inbrowser=args.inbrowser, server_port=args.server_port, share=args.share, listen=args.listen, )