|
from diffusers import ( |
|
StableDiffusionControlNetImg2ImgPipeline, |
|
ControlNetModel, |
|
LCMScheduler, |
|
) |
|
from compel import Compel |
|
import torch |
|
from pipelines.utils.canny_gpu import SobelOperator |
|
|
|
try: |
|
import intel_extension_for_pytorch as ipex |
|
except: |
|
pass |
|
|
|
import psutil |
|
from config import Args |
|
from pydantic import BaseModel, Field |
|
from PIL import Image |
|
|
|
taesd_model = "madebyollin/taesd" |
|
controlnet_model = "lllyasviel/control_v11p_sd15_canny" |
|
|
|
base_models = { |
|
"plasmo/woolitize": "woolitize", |
|
"nitrosocke/Ghibli-Diffusion": "ghibli style", |
|
"nitrosocke/mo-di-diffusion": "modern disney style", |
|
} |
|
lcm_lora_id = "latent-consistency/lcm-lora-sdv1-5" |
|
|
|
|
|
default_prompt = "Portrait of The Terminator with , glare pose, detailed, intricate, full of colour, cinematic lighting, trending on artstation, 8k, hyperrealistic, focused, extreme details, unreal engine 5 cinematic, masterpiece" |
|
|
|
|
|
class Pipeline: |
|
class Info(BaseModel): |
|
name: str = "controlnet+loras+sd15" |
|
title: str = "LCM + LoRA + Controlnet " |
|
description: str = "Generates an image from a text prompt" |
|
input_mode: str = "image" |
|
|
|
class InputParams(BaseModel): |
|
prompt: str = Field( |
|
default_prompt, |
|
title="Prompt", |
|
field="textarea", |
|
id="prompt", |
|
) |
|
model_id: str = Field( |
|
"plasmo/woolitize", |
|
title="Base Model", |
|
values=list(base_models.keys()), |
|
field="select", |
|
id="model_id", |
|
) |
|
seed: int = Field( |
|
2159232, min=0, title="Seed", field="seed", hide=True, id="seed" |
|
) |
|
steps: int = Field( |
|
4, min=2, max=15, title="Steps", field="range", hide=True, id="steps" |
|
) |
|
width: int = Field( |
|
512, min=2, max=15, title="Width", disabled=True, hide=True, id="width" |
|
) |
|
height: int = Field( |
|
512, min=2, max=15, title="Height", disabled=True, hide=True, id="height" |
|
) |
|
guidance_scale: float = Field( |
|
0.2, |
|
min=0, |
|
max=2, |
|
step=0.001, |
|
title="Guidance Scale", |
|
field="range", |
|
hide=True, |
|
id="guidance_scale", |
|
) |
|
strength: float = Field( |
|
0.5, |
|
min=0.25, |
|
max=1.0, |
|
step=0.001, |
|
title="Strength", |
|
field="range", |
|
hide=True, |
|
id="strength", |
|
) |
|
controlnet_scale: float = Field( |
|
0.8, |
|
min=0, |
|
max=1.0, |
|
step=0.001, |
|
title="Controlnet Scale", |
|
field="range", |
|
hide=True, |
|
id="controlnet_scale", |
|
) |
|
controlnet_start: float = Field( |
|
0.0, |
|
min=0, |
|
max=1.0, |
|
step=0.001, |
|
title="Controlnet Start", |
|
field="range", |
|
hide=True, |
|
id="controlnet_start", |
|
) |
|
controlnet_end: float = Field( |
|
1.0, |
|
min=0, |
|
max=1.0, |
|
step=0.001, |
|
title="Controlnet End", |
|
field="range", |
|
hide=True, |
|
id="controlnet_end", |
|
) |
|
canny_low_threshold: float = Field( |
|
0.31, |
|
min=0, |
|
max=1.0, |
|
step=0.001, |
|
title="Canny Low Threshold", |
|
field="range", |
|
hide=True, |
|
id="canny_low_threshold", |
|
) |
|
canny_high_threshold: float = Field( |
|
0.125, |
|
min=0, |
|
max=1.0, |
|
step=0.001, |
|
title="Canny High Threshold", |
|
field="range", |
|
hide=True, |
|
id="canny_high_threshold", |
|
) |
|
debug_canny: bool = Field( |
|
False, |
|
title="Debug Canny", |
|
field="checkbox", |
|
hide=True, |
|
id="debug_canny", |
|
) |
|
|
|
def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype): |
|
controlnet_canny = ControlNetModel.from_pretrained( |
|
controlnet_model, torch_dtype=torch_dtype |
|
).to(device) |
|
|
|
self.pipes = {} |
|
|
|
if args.safety_checker: |
|
for model_id in base_models.keys(): |
|
pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained( |
|
model_id, |
|
controlnet=controlnet_canny, |
|
) |
|
self.pipes[model_id] = pipe |
|
else: |
|
for model_id in base_models.keys(): |
|
pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained( |
|
model_id, |
|
safety_checker=None, |
|
controlnet=controlnet_canny, |
|
) |
|
self.pipes[model_id] = pipe |
|
|
|
self.canny_torch = SobelOperator(device=device) |
|
|
|
for pipe in self.pipes.values(): |
|
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) |
|
pipe.set_progress_bar_config(disable=True) |
|
pipe.to(device=device, dtype=torch_dtype).to(device) |
|
|
|
if psutil.virtual_memory().total < 64 * 1024**3: |
|
pipe.enable_attention_slicing() |
|
|
|
|
|
pipe.load_lora_weights(lcm_lora_id, adapter_name="lcm") |
|
pipe.compel_proc = Compel( |
|
tokenizer=pipe.tokenizer, |
|
text_encoder=pipe.text_encoder, |
|
truncate_long_prompts=False, |
|
) |
|
if args.torch_compile: |
|
pipe.unet = torch.compile( |
|
pipe.unet, mode="reduce-overhead", fullgraph=True |
|
) |
|
pipe.vae = torch.compile( |
|
pipe.vae, mode="reduce-overhead", fullgraph=True |
|
) |
|
pipe( |
|
prompt="warmup", |
|
image=[Image.new("RGB", (768, 768))], |
|
control_image=[Image.new("RGB", (768, 768))], |
|
) |
|
|
|
def predict(self, params: "Pipeline.InputParams") -> Image.Image: |
|
generator = torch.manual_seed(params.seed) |
|
print(f"Using model: {params.model_id}") |
|
pipe = self.pipes[params.model_id] |
|
|
|
activation_token = base_models[params.model_id] |
|
prompt = f"{activation_token} {params.prompt}" |
|
prompt_embeds = pipe.compel_proc(prompt) |
|
control_image = self.canny_torch( |
|
params.image, params.canny_low_threshold, params.canny_high_threshold |
|
) |
|
|
|
results = pipe( |
|
image=params.image, |
|
control_image=control_image, |
|
prompt_embeds=prompt_embeds, |
|
generator=generator, |
|
strength=params.strength, |
|
num_inference_steps=params.steps, |
|
guidance_scale=params.guidance_scale, |
|
width=params.width, |
|
height=params.height, |
|
output_type="pil", |
|
controlnet_conditioning_scale=params.controlnet_scale, |
|
control_guidance_start=params.controlnet_start, |
|
control_guidance_end=params.controlnet_end, |
|
) |
|
|
|
nsfw_content_detected = ( |
|
results.nsfw_content_detected[0] |
|
if "nsfw_content_detected" in results |
|
else False |
|
) |
|
if nsfw_content_detected: |
|
return None |
|
result_image = results.images[0] |
|
if params.debug_canny: |
|
|
|
w0, h0 = (200, 200) |
|
control_image = control_image.resize((w0, h0)) |
|
w1, h1 = result_image.size |
|
result_image.paste(control_image, (w1 - w0, h1 - h0)) |
|
|
|
return result_image |
|
|