|
from diffusers import ( |
|
DiffusionPipeline, |
|
LCMScheduler, |
|
AutoencoderKL, |
|
) |
|
from compel import Compel, ReturnedEmbeddingsType |
|
import torch |
|
|
|
try: |
|
import intel_extension_for_pytorch as ipex |
|
except: |
|
pass |
|
|
|
import psutil |
|
from config import Args |
|
from pydantic import BaseModel, Field |
|
from PIL import Image |
|
|
|
controlnet_model = "diffusers/controlnet-canny-sdxl-1.0" |
|
model_id = "stabilityai/stable-diffusion-xl-base-1.0" |
|
lcm_lora_id = "latent-consistency/lcm-lora-sdxl" |
|
|
|
|
|
default_prompt = "close-up photography of old man standing in the rain at night, in a street lit by lamps, leica 35mm summilux" |
|
default_negative_prompt = "blurry, low quality, render, 3D, oversaturated" |
|
|
|
|
|
class Pipeline: |
|
class Info(BaseModel): |
|
name: str = "LCM+Lora+SDXL" |
|
title: str = "Text-to-Image SDXL + LCM + LoRA" |
|
description: str = "Generates an image from a text prompt" |
|
input_mode: str = "text" |
|
|
|
class InputParams(BaseModel): |
|
prompt: str = Field( |
|
default_prompt, |
|
title="Prompt", |
|
field="textarea", |
|
id="prompt", |
|
) |
|
negative_prompt: str = Field( |
|
default_negative_prompt, |
|
title="Negative Prompt", |
|
field="textarea", |
|
id="negative_prompt", |
|
hide=True, |
|
) |
|
seed: int = Field( |
|
2159232, min=0, title="Seed", field="seed", hide=True, id="seed" |
|
) |
|
steps: int = Field( |
|
4, min=2, max=15, title="Steps", field="range", hide=True, id="steps" |
|
) |
|
width: int = Field( |
|
1024, min=2, max=15, title="Width", disabled=True, hide=True, id="width" |
|
) |
|
height: int = Field( |
|
1024, min=2, max=15, title="Height", disabled=True, hide=True, id="height" |
|
) |
|
guidance_scale: float = Field( |
|
1.0, |
|
min=0, |
|
max=20, |
|
step=0.001, |
|
title="Guidance Scale", |
|
field="range", |
|
hide=True, |
|
id="guidance_scale", |
|
) |
|
|
|
def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype): |
|
vae = AutoencoderKL.from_pretrained( |
|
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch_dtype |
|
) |
|
if args.safety_checker: |
|
self.pipe = DiffusionPipeline.from_pretrained( |
|
model_id, |
|
vae=vae, |
|
) |
|
else: |
|
self.pipe = DiffusionPipeline.from_pretrained( |
|
model_id, |
|
safety_checker=None, |
|
vae=vae, |
|
) |
|
|
|
self.pipe.load_lora_weights(lcm_lora_id, adapter_name="lcm") |
|
self.pipe.scheduler = LCMScheduler.from_config(self.pipe.scheduler.config) |
|
self.pipe.set_progress_bar_config(disable=True) |
|
self.pipe.to(device=device, dtype=torch_dtype).to(device) |
|
|
|
if psutil.virtual_memory().total < 64 * 1024**3: |
|
self.pipe.enable_attention_slicing() |
|
|
|
self.pipe.compel_proc = Compel( |
|
tokenizer=[self.pipe.tokenizer, self.pipe.tokenizer_2], |
|
text_encoder=[self.pipe.text_encoder, self.pipe.text_encoder_2], |
|
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, |
|
requires_pooled=[False, True], |
|
) |
|
|
|
if args.torch_compile: |
|
self.pipe.unet = torch.compile( |
|
self.pipe.unet, mode="reduce-overhead", fullgraph=True |
|
) |
|
self.pipe.vae = torch.compile( |
|
self.pipe.vae, mode="reduce-overhead", fullgraph=True |
|
) |
|
self.pipe( |
|
prompt="warmup", |
|
) |
|
|
|
def predict(self, params: "Pipeline.InputParams") -> Image.Image: |
|
generator = torch.manual_seed(params.seed) |
|
|
|
prompt_embeds, pooled_prompt_embeds = self.pipe.compel_proc( |
|
[params.prompt, params.negative_prompt] |
|
) |
|
results = self.pipe( |
|
prompt_embeds=prompt_embeds[0:1], |
|
pooled_prompt_embeds=pooled_prompt_embeds[0:1], |
|
negative_prompt_embeds=prompt_embeds[1:2], |
|
negative_pooled_prompt_embeds=pooled_prompt_embeds[1:2], |
|
generator=generator, |
|
num_inference_steps=params.steps, |
|
guidance_scale=params.guidance_scale, |
|
width=params.width, |
|
height=params.height, |
|
output_type="pil", |
|
) |
|
|
|
nsfw_content_detected = ( |
|
results.nsfw_content_detected[0] |
|
if "nsfw_content_detected" in results |
|
else False |
|
) |
|
if nsfw_content_detected: |
|
return None |
|
result_image = results.images[0] |
|
|
|
return result_image |
|
|