add sfast
Browse files- app.py +1 -0
- app_init.py +4 -2
- frontend/src/lib/components/VideoInput.svelte +2 -2
- pipelines/controlnet.py +1 -1
- pipelines/controlnetLoraSD15.py +16 -12
- pipelines/controlnetLoraSDXL.py +45 -17
- pipelines/{controlnelSD21Turbo.py → controlnetSDTurbo.py} +0 -0
- pipelines/controlnetSegmindVegaRT.py +13 -3
- pipelines/img2img.py +24 -10
- pipelines/{img2imgSD21Turbo.py → img2imgSDTurbo.py} +0 -0
- pipelines/img2imgSDXLTurbo.py +47 -23
- pipelines/img2imgSegmindVegaRT.py +13 -5
- pipelines/txt2img.py +25 -10
- pipelines/txt2imgLora.py +27 -11
- pipelines/txt2imgLoraSDXL.py +36 -10
app.py
CHANGED
@@ -12,6 +12,7 @@ print("TORCH_DTYPE:", torch_dtype)
|
|
12 |
print("PIPELINE:", args.pipeline)
|
13 |
print("SAFETY_CHECKER:", args.safety_checker)
|
14 |
print("TORCH_COMPILE:", args.torch_compile)
|
|
|
15 |
print("USE_TAESD:", args.taesd)
|
16 |
print("COMPEL:", args.compel)
|
17 |
print("DEBUG:", args.debug)
|
|
|
12 |
print("PIPELINE:", args.pipeline)
|
13 |
print("SAFETY_CHECKER:", args.safety_checker)
|
14 |
print("TORCH_COMPILE:", args.torch_compile)
|
15 |
+
print("SFast:", args.sfast)
|
16 |
print("USE_TAESD:", args.taesd)
|
17 |
print("COMPEL:", args.compel)
|
18 |
print("DEBUG:", args.debug)
|
app_init.py
CHANGED
@@ -17,6 +17,8 @@ import asyncio
|
|
17 |
import os
|
18 |
import time
|
19 |
|
|
|
|
|
20 |
|
21 |
def init_app(app: FastAPI, user_data: UserData, args: Args, pipeline):
|
22 |
app.add_middleware(
|
@@ -61,7 +63,7 @@ def init_app(app: FastAPI, user_data: UserData, args: Args, pipeline):
|
|
61 |
while True:
|
62 |
data = await websocket.receive_json()
|
63 |
if data["status"] != "next_frame":
|
64 |
-
asyncio.sleep(
|
65 |
continue
|
66 |
|
67 |
params = await websocket.receive_json()
|
@@ -86,7 +88,7 @@ def init_app(app: FastAPI, user_data: UserData, args: Args, pipeline):
|
|
86 |
)
|
87 |
await websocket.close()
|
88 |
return
|
89 |
-
await asyncio.sleep(
|
90 |
|
91 |
except Exception as e:
|
92 |
logging.error(f"Error: {e}")
|
|
|
17 |
import os
|
18 |
import time
|
19 |
|
20 |
+
THROTTLE = 1.0 / 120
|
21 |
+
|
22 |
|
23 |
def init_app(app: FastAPI, user_data: UserData, args: Args, pipeline):
|
24 |
app.add_middleware(
|
|
|
63 |
while True:
|
64 |
data = await websocket.receive_json()
|
65 |
if data["status"] != "next_frame":
|
66 |
+
asyncio.sleep(THROTTLE)
|
67 |
continue
|
68 |
|
69 |
params = await websocket.receive_json()
|
|
|
88 |
)
|
89 |
await websocket.close()
|
90 |
return
|
91 |
+
await asyncio.sleep(THROTTLE)
|
92 |
|
93 |
except Exception as e:
|
94 |
logging.error(f"Error: {e}")
|
frontend/src/lib/components/VideoInput.svelte
CHANGED
@@ -20,7 +20,7 @@
|
|
20 |
let videoFrameCallbackId: number;
|
21 |
|
22 |
// ajust the throttle time to your needs
|
23 |
-
const
|
24 |
let selectedDevice: string = '';
|
25 |
let videoIsReady = false;
|
26 |
|
@@ -41,7 +41,7 @@
|
|
41 |
}
|
42 |
let lastMillis = 0;
|
43 |
async function onFrameChange(now: DOMHighResTimeStamp, metadata: VideoFrameCallbackMetadata) {
|
44 |
-
if (now - lastMillis <
|
45 |
videoFrameCallbackId = videoEl.requestVideoFrameCallback(onFrameChange);
|
46 |
return;
|
47 |
}
|
|
|
20 |
let videoFrameCallbackId: number;
|
21 |
|
22 |
// ajust the throttle time to your needs
|
23 |
+
const THROTTLE = 1000 / 120;
|
24 |
let selectedDevice: string = '';
|
25 |
let videoIsReady = false;
|
26 |
|
|
|
41 |
}
|
42 |
let lastMillis = 0;
|
43 |
async function onFrameChange(now: DOMHighResTimeStamp, metadata: VideoFrameCallbackMetadata) {
|
44 |
+
if (now - lastMillis < THROTTLE) {
|
45 |
videoFrameCallbackId = videoEl.requestVideoFrameCallback(onFrameChange);
|
46 |
return;
|
47 |
}
|
pipelines/controlnet.py
CHANGED
@@ -185,6 +185,7 @@ class Pipeline:
|
|
185 |
config.enable_triton = True
|
186 |
config.enable_cuda_graph = True
|
187 |
self.pipe = compile(self.pipe, config=config)
|
|
|
188 |
self.canny_torch = SobelOperator(device=device)
|
189 |
self.pipe.set_progress_bar_config(disable=True)
|
190 |
self.pipe.to(device=device, dtype=torch_dtype)
|
@@ -214,7 +215,6 @@ class Pipeline:
|
|
214 |
def predict(self, params: "Pipeline.InputParams") -> Image.Image:
|
215 |
generator = torch.manual_seed(params.seed)
|
216 |
prompt_embeds = None
|
217 |
-
control_image = None
|
218 |
prompt = params.prompt
|
219 |
if hasattr(self, "compel_proc"):
|
220 |
prompt_embeds = self.compel_proc(params.prompt)
|
|
|
185 |
config.enable_triton = True
|
186 |
config.enable_cuda_graph = True
|
187 |
self.pipe = compile(self.pipe, config=config)
|
188 |
+
|
189 |
self.canny_torch = SobelOperator(device=device)
|
190 |
self.pipe.set_progress_bar_config(disable=True)
|
191 |
self.pipe.to(device=device, dtype=torch_dtype)
|
|
|
215 |
def predict(self, params: "Pipeline.InputParams") -> Image.Image:
|
216 |
generator = torch.manual_seed(params.seed)
|
217 |
prompt_embeds = None
|
|
|
218 |
prompt = params.prompt
|
219 |
if hasattr(self, "compel_proc"):
|
220 |
prompt_embeds = self.compel_proc(params.prompt)
|
pipelines/controlnetLoraSD15.py
CHANGED
@@ -81,7 +81,7 @@ class Pipeline:
|
|
81 |
2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
|
82 |
)
|
83 |
steps: int = Field(
|
84 |
-
|
85 |
)
|
86 |
width: int = Field(
|
87 |
768, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
|
@@ -90,7 +90,7 @@ class Pipeline:
|
|
90 |
768, min=2, max=15, title="Height", disabled=True, hide=True, id="height"
|
91 |
)
|
92 |
guidance_scale: float = Field(
|
93 |
-
0
|
94 |
min=0,
|
95 |
max=2,
|
96 |
step=0.001,
|
@@ -195,13 +195,9 @@ class Pipeline:
|
|
195 |
for pipe in self.pipes.values():
|
196 |
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
197 |
pipe.set_progress_bar_config(disable=True)
|
198 |
-
pipe.to(device=device, dtype=torch_dtype).to(device)
|
199 |
if device.type != "mps":
|
200 |
pipe.unet.to(memory_format=torch.channels_last)
|
201 |
|
202 |
-
if psutil.virtual_memory().total < 64 * 1024**3:
|
203 |
-
pipe.enable_attention_slicing()
|
204 |
-
|
205 |
if args.taesd:
|
206 |
pipe.vae = AutoencoderTiny.from_pretrained(
|
207 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
@@ -209,11 +205,13 @@ class Pipeline:
|
|
209 |
|
210 |
# Load LCM LoRA
|
211 |
pipe.load_lora_weights(lcm_lora_id, adapter_name="lcm")
|
212 |
-
pipe.
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
|
|
|
|
217 |
if args.torch_compile:
|
218 |
pipe.unet = torch.compile(
|
219 |
pipe.unet, mode="reduce-overhead", fullgraph=True
|
@@ -233,7 +231,12 @@ class Pipeline:
|
|
233 |
|
234 |
activation_token = base_models[params.base_model_id]
|
235 |
prompt = f"{activation_token} {params.prompt}"
|
236 |
-
prompt_embeds =
|
|
|
|
|
|
|
|
|
|
|
237 |
control_image = self.canny_torch(
|
238 |
params.image, params.canny_low_threshold, params.canny_high_threshold
|
239 |
)
|
@@ -245,6 +248,7 @@ class Pipeline:
|
|
245 |
results = pipe(
|
246 |
image=params.image,
|
247 |
control_image=control_image,
|
|
|
248 |
prompt_embeds=prompt_embeds,
|
249 |
generator=generator,
|
250 |
strength=strength,
|
|
|
81 |
2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
|
82 |
)
|
83 |
steps: int = Field(
|
84 |
+
1, min=1, max=15, title="Steps", field="range", hide=True, id="steps"
|
85 |
)
|
86 |
width: int = Field(
|
87 |
768, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
|
|
|
90 |
768, min=2, max=15, title="Height", disabled=True, hide=True, id="height"
|
91 |
)
|
92 |
guidance_scale: float = Field(
|
93 |
+
1.0,
|
94 |
min=0,
|
95 |
max=2,
|
96 |
step=0.001,
|
|
|
195 |
for pipe in self.pipes.values():
|
196 |
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
197 |
pipe.set_progress_bar_config(disable=True)
|
|
|
198 |
if device.type != "mps":
|
199 |
pipe.unet.to(memory_format=torch.channels_last)
|
200 |
|
|
|
|
|
|
|
201 |
if args.taesd:
|
202 |
pipe.vae = AutoencoderTiny.from_pretrained(
|
203 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
|
|
205 |
|
206 |
# Load LCM LoRA
|
207 |
pipe.load_lora_weights(lcm_lora_id, adapter_name="lcm")
|
208 |
+
pipe.to(device=device, dtype=torch_dtype).to(device)
|
209 |
+
if args.compel:
|
210 |
+
self.compel_proc = Compel(
|
211 |
+
tokenizer=pipe.tokenizer,
|
212 |
+
text_encoder=pipe.text_encoder,
|
213 |
+
truncate_long_prompts=False,
|
214 |
+
)
|
215 |
if args.torch_compile:
|
216 |
pipe.unet = torch.compile(
|
217 |
pipe.unet, mode="reduce-overhead", fullgraph=True
|
|
|
231 |
|
232 |
activation_token = base_models[params.base_model_id]
|
233 |
prompt = f"{activation_token} {params.prompt}"
|
234 |
+
prompt_embeds = None
|
235 |
+
prompt = params.prompt
|
236 |
+
if hasattr(self, "compel_proc"):
|
237 |
+
prompt_embeds = self.compel_proc(prompt)
|
238 |
+
prompt = None
|
239 |
+
|
240 |
control_image = self.canny_torch(
|
241 |
params.image, params.canny_low_threshold, params.canny_high_threshold
|
242 |
)
|
|
|
248 |
results = pipe(
|
249 |
image=params.image,
|
250 |
control_image=control_image,
|
251 |
+
prompt=prompt,
|
252 |
prompt_embeds=prompt_embeds,
|
253 |
generator=generator,
|
254 |
strength=strength,
|
pipelines/controlnetLoraSDXL.py
CHANGED
@@ -80,7 +80,7 @@ class Pipeline:
|
|
80 |
2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
|
81 |
)
|
82 |
steps: int = Field(
|
83 |
-
|
84 |
)
|
85 |
width: int = Field(
|
86 |
1024, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
|
@@ -91,7 +91,7 @@ class Pipeline:
|
|
91 |
guidance_scale: float = Field(
|
92 |
1.0,
|
93 |
min=0,
|
94 |
-
max=
|
95 |
step=0.001,
|
96 |
title="Guidance Scale",
|
97 |
field="range",
|
@@ -199,18 +199,30 @@ class Pipeline:
|
|
199 |
self.pipe.scheduler = LCMScheduler.from_config(self.pipe.scheduler.config)
|
200 |
self.pipe.set_progress_bar_config(disable=True)
|
201 |
self.pipe.to(device=device, dtype=torch_dtype).to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
if device.type != "mps":
|
203 |
self.pipe.unet.to(memory_format=torch.channels_last)
|
204 |
|
205 |
-
if
|
206 |
-
self.pipe.
|
|
|
|
|
|
|
|
|
|
|
207 |
|
208 |
-
self.pipe.compel_proc = Compel(
|
209 |
-
tokenizer=[self.pipe.tokenizer, self.pipe.tokenizer_2],
|
210 |
-
text_encoder=[self.pipe.text_encoder, self.pipe.text_encoder_2],
|
211 |
-
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
|
212 |
-
requires_pooled=[False, True],
|
213 |
-
)
|
214 |
if args.taesd:
|
215 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
216 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
@@ -232,9 +244,23 @@ class Pipeline:
|
|
232 |
def predict(self, params: "Pipeline.InputParams") -> Image.Image:
|
233 |
generator = torch.manual_seed(params.seed)
|
234 |
|
235 |
-
|
236 |
-
|
237 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
238 |
control_image = self.canny_torch(
|
239 |
params.image, params.canny_low_threshold, params.canny_high_threshold
|
240 |
)
|
@@ -246,10 +272,12 @@ class Pipeline:
|
|
246 |
results = self.pipe(
|
247 |
image=params.image,
|
248 |
control_image=control_image,
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
|
|
|
|
253 |
generator=generator,
|
254 |
strength=strength,
|
255 |
num_inference_steps=steps,
|
|
|
80 |
2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
|
81 |
)
|
82 |
steps: int = Field(
|
83 |
+
1, min=1, max=10, title="Steps", field="range", hide=True, id="steps"
|
84 |
)
|
85 |
width: int = Field(
|
86 |
1024, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
|
|
|
91 |
guidance_scale: float = Field(
|
92 |
1.0,
|
93 |
min=0,
|
94 |
+
max=2.0,
|
95 |
step=0.001,
|
96 |
title="Guidance Scale",
|
97 |
field="range",
|
|
|
199 |
self.pipe.scheduler = LCMScheduler.from_config(self.pipe.scheduler.config)
|
200 |
self.pipe.set_progress_bar_config(disable=True)
|
201 |
self.pipe.to(device=device, dtype=torch_dtype).to(device)
|
202 |
+
|
203 |
+
if args.sfast:
|
204 |
+
from sfast.compilers.stable_diffusion_pipeline_compiler import (
|
205 |
+
compile,
|
206 |
+
CompilationConfig,
|
207 |
+
)
|
208 |
+
|
209 |
+
config = CompilationConfig.Default()
|
210 |
+
config.enable_xformers = True
|
211 |
+
config.enable_triton = True
|
212 |
+
config.enable_cuda_graph = True
|
213 |
+
self.pipe = compile(self.pipe, config=config)
|
214 |
+
|
215 |
if device.type != "mps":
|
216 |
self.pipe.unet.to(memory_format=torch.channels_last)
|
217 |
|
218 |
+
if args.compel:
|
219 |
+
self.pipe.compel_proc = Compel(
|
220 |
+
tokenizer=[self.pipe.tokenizer, self.pipe.tokenizer_2],
|
221 |
+
text_encoder=[self.pipe.text_encoder, self.pipe.text_encoder_2],
|
222 |
+
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
|
223 |
+
requires_pooled=[False, True],
|
224 |
+
)
|
225 |
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
if args.taesd:
|
227 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
228 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
|
|
244 |
def predict(self, params: "Pipeline.InputParams") -> Image.Image:
|
245 |
generator = torch.manual_seed(params.seed)
|
246 |
|
247 |
+
prompt = params.prompt
|
248 |
+
negative_prompt = params.negative_prompt
|
249 |
+
prompt_embeds = None
|
250 |
+
pooled_prompt_embeds = None
|
251 |
+
negative_prompt_embeds = None
|
252 |
+
negative_pooled_prompt_embeds = None
|
253 |
+
if hasattr(self.pipe, "compel_proc"):
|
254 |
+
_prompt_embeds, pooled_prompt_embeds = self.pipe.compel_proc(
|
255 |
+
[params.prompt, params.negative_prompt]
|
256 |
+
)
|
257 |
+
prompt = None
|
258 |
+
negative_prompt = None
|
259 |
+
prompt_embeds = _prompt_embeds[0:1]
|
260 |
+
pooled_prompt_embeds = pooled_prompt_embeds[0:1]
|
261 |
+
negative_prompt_embeds = _prompt_embeds[1:2]
|
262 |
+
negative_pooled_prompt_embeds = pooled_prompt_embeds[1:2]
|
263 |
+
|
264 |
control_image = self.canny_torch(
|
265 |
params.image, params.canny_low_threshold, params.canny_high_threshold
|
266 |
)
|
|
|
272 |
results = self.pipe(
|
273 |
image=params.image,
|
274 |
control_image=control_image,
|
275 |
+
prompt=prompt,
|
276 |
+
negative_prompt=negative_prompt,
|
277 |
+
prompt_embeds=prompt_embeds,
|
278 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
279 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
280 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
281 |
generator=generator,
|
282 |
strength=strength,
|
283 |
num_inference_steps=steps,
|
pipelines/{controlnelSD21Turbo.py → controlnetSDTurbo.py}
RENAMED
File without changes
|
pipelines/controlnetSegmindVegaRT.py
CHANGED
@@ -193,14 +193,24 @@ class Pipeline:
|
|
193 |
self.pipe.scheduler = LCMScheduler.from_pretrained(
|
194 |
base_model, subfolder="scheduler"
|
195 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
self.pipe.set_progress_bar_config(disable=True)
|
197 |
self.pipe.to(device=device, dtype=torch_dtype).to(device)
|
198 |
if device.type != "mps":
|
199 |
self.pipe.unet.to(memory_format=torch.channels_last)
|
200 |
|
201 |
-
if psutil.virtual_memory().total < 64 * 1024**3:
|
202 |
-
self.pipe.enable_attention_slicing()
|
203 |
-
|
204 |
if args.compel:
|
205 |
self.pipe.compel_proc = Compel(
|
206 |
tokenizer=[self.pipe.tokenizer, self.pipe.tokenizer_2],
|
|
|
193 |
self.pipe.scheduler = LCMScheduler.from_pretrained(
|
194 |
base_model, subfolder="scheduler"
|
195 |
)
|
196 |
+
|
197 |
+
if args.sfast:
|
198 |
+
from sfast.compilers.stable_diffusion_pipeline_compiler import (
|
199 |
+
compile,
|
200 |
+
CompilationConfig,
|
201 |
+
)
|
202 |
+
|
203 |
+
config = CompilationConfig.Default()
|
204 |
+
config.enable_xformers = True
|
205 |
+
config.enable_triton = True
|
206 |
+
config.enable_cuda_graph = True
|
207 |
+
self.pipe = compile(self.pipe, config=config)
|
208 |
+
|
209 |
self.pipe.set_progress_bar_config(disable=True)
|
210 |
self.pipe.to(device=device, dtype=torch_dtype).to(device)
|
211 |
if device.type != "mps":
|
212 |
self.pipe.unet.to(memory_format=torch.channels_last)
|
213 |
|
|
|
|
|
|
|
214 |
if args.compel:
|
215 |
self.pipe.compel_proc = Compel(
|
216 |
tokenizer=[self.pipe.tokenizer, self.pipe.tokenizer_2],
|
pipelines/img2img.py
CHANGED
@@ -107,15 +107,23 @@ class Pipeline:
|
|
107 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
108 |
).to(device)
|
109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
self.pipe.set_progress_bar_config(disable=True)
|
111 |
self.pipe.to(device=device, dtype=torch_dtype)
|
112 |
if device.type != "mps":
|
113 |
self.pipe.unet.to(memory_format=torch.channels_last)
|
114 |
|
115 |
-
# check if computer has less than 64GB of RAM using sys or os
|
116 |
-
if psutil.virtual_memory().total < 64 * 1024**3:
|
117 |
-
self.pipe.enable_attention_slicing()
|
118 |
-
|
119 |
if args.torch_compile:
|
120 |
print("Running torch compile")
|
121 |
self.pipe.unet = torch.compile(
|
@@ -130,15 +138,20 @@ class Pipeline:
|
|
130 |
image=[Image.new("RGB", (768, 768))],
|
131 |
)
|
132 |
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
|
|
138 |
|
139 |
def predict(self, params: "Pipeline.InputParams") -> Image.Image:
|
140 |
generator = torch.manual_seed(params.seed)
|
141 |
-
prompt_embeds =
|
|
|
|
|
|
|
|
|
142 |
|
143 |
steps = params.steps
|
144 |
strength = params.strength
|
@@ -147,6 +160,7 @@ class Pipeline:
|
|
147 |
|
148 |
results = self.pipe(
|
149 |
image=params.image,
|
|
|
150 |
prompt_embeds=prompt_embeds,
|
151 |
generator=generator,
|
152 |
strength=strength,
|
|
|
107 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
108 |
).to(device)
|
109 |
|
110 |
+
if args.sfast:
|
111 |
+
from sfast.compilers.stable_diffusion_pipeline_compiler import (
|
112 |
+
compile,
|
113 |
+
CompilationConfig,
|
114 |
+
)
|
115 |
+
|
116 |
+
config = CompilationConfig.Default()
|
117 |
+
config.enable_xformers = True
|
118 |
+
config.enable_triton = True
|
119 |
+
config.enable_cuda_graph = True
|
120 |
+
self.pipe = compile(self.pipe, config=config)
|
121 |
+
|
122 |
self.pipe.set_progress_bar_config(disable=True)
|
123 |
self.pipe.to(device=device, dtype=torch_dtype)
|
124 |
if device.type != "mps":
|
125 |
self.pipe.unet.to(memory_format=torch.channels_last)
|
126 |
|
|
|
|
|
|
|
|
|
127 |
if args.torch_compile:
|
128 |
print("Running torch compile")
|
129 |
self.pipe.unet = torch.compile(
|
|
|
138 |
image=[Image.new("RGB", (768, 768))],
|
139 |
)
|
140 |
|
141 |
+
if args.compel:
|
142 |
+
self.compel_proc = Compel(
|
143 |
+
tokenizer=self.pipe.tokenizer,
|
144 |
+
text_encoder=self.pipe.text_encoder,
|
145 |
+
truncate_long_prompts=False,
|
146 |
+
)
|
147 |
|
148 |
def predict(self, params: "Pipeline.InputParams") -> Image.Image:
|
149 |
generator = torch.manual_seed(params.seed)
|
150 |
+
prompt_embeds = None
|
151 |
+
prompt = params.prompt
|
152 |
+
if hasattr(self, "compel_proc"):
|
153 |
+
prompt_embeds = self.compel_proc(params.prompt)
|
154 |
+
prompt = None
|
155 |
|
156 |
steps = params.steps
|
157 |
strength = params.strength
|
|
|
160 |
|
161 |
results = self.pipe(
|
162 |
image=params.image,
|
163 |
+
prompt=prompt,
|
164 |
prompt_embeds=prompt_embeds,
|
165 |
generator=generator,
|
166 |
strength=strength,
|
pipelines/{img2imgSD21Turbo.py → img2imgSDTurbo.py}
RENAMED
File without changes
|
pipelines/img2imgSDXLTurbo.py
CHANGED
@@ -73,18 +73,18 @@ class Pipeline:
|
|
73 |
2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
|
74 |
)
|
75 |
steps: int = Field(
|
76 |
-
|
77 |
)
|
78 |
width: int = Field(
|
79 |
-
|
80 |
)
|
81 |
height: int = Field(
|
82 |
-
|
83 |
)
|
84 |
guidance_scale: float = Field(
|
85 |
-
0
|
86 |
min=0,
|
87 |
-
max=
|
88 |
step=0.001,
|
89 |
title="Guidance Scale",
|
90 |
field="range",
|
@@ -115,15 +115,23 @@ class Pipeline:
|
|
115 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
116 |
).to(device)
|
117 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
self.pipe.set_progress_bar_config(disable=True)
|
119 |
self.pipe.to(device=device, dtype=torch_dtype)
|
120 |
if device.type != "mps":
|
121 |
self.pipe.unet.to(memory_format=torch.channels_last)
|
122 |
|
123 |
-
# check if computer has less than 64GB of RAM using sys or os
|
124 |
-
if psutil.virtual_memory().total < 64 * 1024**3:
|
125 |
-
self.pipe.enable_attention_slicing()
|
126 |
-
|
127 |
if args.torch_compile:
|
128 |
print("Running torch compile")
|
129 |
self.pipe.unet = torch.compile(
|
@@ -132,24 +140,38 @@ class Pipeline:
|
|
132 |
self.pipe.vae = torch.compile(
|
133 |
self.pipe.vae, mode="reduce-overhead", fullgraph=True
|
134 |
)
|
135 |
-
|
136 |
self.pipe(
|
137 |
prompt="warmup",
|
138 |
image=[Image.new("RGB", (768, 768))],
|
139 |
)
|
140 |
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
|
|
147 |
|
148 |
def predict(self, params: "Pipeline.InputParams") -> Image.Image:
|
149 |
generator = torch.manual_seed(params.seed)
|
150 |
-
|
151 |
-
|
152 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
steps = params.steps
|
154 |
strength = params.strength
|
155 |
if int(steps * strength) < 1:
|
@@ -157,10 +179,12 @@ class Pipeline:
|
|
157 |
|
158 |
results = self.pipe(
|
159 |
image=params.image,
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
|
|
|
|
164 |
generator=generator,
|
165 |
strength=strength,
|
166 |
num_inference_steps=steps,
|
|
|
73 |
2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
|
74 |
)
|
75 |
steps: int = Field(
|
76 |
+
1, min=1, max=10, title="Steps", field="range", hide=True, id="steps"
|
77 |
)
|
78 |
width: int = Field(
|
79 |
+
768, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
|
80 |
)
|
81 |
height: int = Field(
|
82 |
+
768, min=2, max=15, title="Height", disabled=True, hide=True, id="height"
|
83 |
)
|
84 |
guidance_scale: float = Field(
|
85 |
+
1.0,
|
86 |
min=0,
|
87 |
+
max=1,
|
88 |
step=0.001,
|
89 |
title="Guidance Scale",
|
90 |
field="range",
|
|
|
115 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
116 |
).to(device)
|
117 |
|
118 |
+
if args.sfast:
|
119 |
+
from sfast.compilers.stable_diffusion_pipeline_compiler import (
|
120 |
+
compile,
|
121 |
+
CompilationConfig,
|
122 |
+
)
|
123 |
+
|
124 |
+
config = CompilationConfig.Default()
|
125 |
+
config.enable_xformers = True
|
126 |
+
config.enable_triton = True
|
127 |
+
config.enable_cuda_graph = True
|
128 |
+
self.pipe = compile(self.pipe, config=config)
|
129 |
+
|
130 |
self.pipe.set_progress_bar_config(disable=True)
|
131 |
self.pipe.to(device=device, dtype=torch_dtype)
|
132 |
if device.type != "mps":
|
133 |
self.pipe.unet.to(memory_format=torch.channels_last)
|
134 |
|
|
|
|
|
|
|
|
|
135 |
if args.torch_compile:
|
136 |
print("Running torch compile")
|
137 |
self.pipe.unet = torch.compile(
|
|
|
140 |
self.pipe.vae = torch.compile(
|
141 |
self.pipe.vae, mode="reduce-overhead", fullgraph=True
|
142 |
)
|
|
|
143 |
self.pipe(
|
144 |
prompt="warmup",
|
145 |
image=[Image.new("RGB", (768, 768))],
|
146 |
)
|
147 |
|
148 |
+
if args.compel:
|
149 |
+
self.pipe.compel_proc = Compel(
|
150 |
+
tokenizer=[self.pipe.tokenizer, self.pipe.tokenizer_2],
|
151 |
+
text_encoder=[self.pipe.text_encoder, self.pipe.text_encoder_2],
|
152 |
+
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
|
153 |
+
requires_pooled=[False, True],
|
154 |
+
)
|
155 |
|
156 |
def predict(self, params: "Pipeline.InputParams") -> Image.Image:
|
157 |
generator = torch.manual_seed(params.seed)
|
158 |
+
prompt = params.prompt
|
159 |
+
negative_prompt = params.negative_prompt
|
160 |
+
prompt_embeds = None
|
161 |
+
pooled_prompt_embeds = None
|
162 |
+
negative_prompt_embeds = None
|
163 |
+
negative_pooled_prompt_embeds = None
|
164 |
+
if hasattr(self.pipe, "compel_proc"):
|
165 |
+
_prompt_embeds, pooled_prompt_embeds = self.pipe.compel_proc(
|
166 |
+
[params.prompt, params.negative_prompt]
|
167 |
+
)
|
168 |
+
prompt = None
|
169 |
+
negative_prompt = None
|
170 |
+
prompt_embeds = _prompt_embeds[0:1]
|
171 |
+
pooled_prompt_embeds = pooled_prompt_embeds[0:1]
|
172 |
+
negative_prompt_embeds = _prompt_embeds[1:2]
|
173 |
+
negative_pooled_prompt_embeds = pooled_prompt_embeds[1:2]
|
174 |
+
|
175 |
steps = params.steps
|
176 |
strength = params.strength
|
177 |
if int(steps * strength) < 1:
|
|
|
179 |
|
180 |
results = self.pipe(
|
181 |
image=params.image,
|
182 |
+
prompt=prompt,
|
183 |
+
negative_prompt=negative_prompt,
|
184 |
+
prompt_embeds=prompt_embeds,
|
185 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
186 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
187 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
188 |
generator=generator,
|
189 |
strength=strength,
|
190 |
num_inference_steps=steps,
|
pipelines/img2imgSegmindVegaRT.py
CHANGED
@@ -75,7 +75,7 @@ class Pipeline:
|
|
75 |
2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
|
76 |
)
|
77 |
steps: int = Field(
|
78 |
-
|
79 |
)
|
80 |
width: int = Field(
|
81 |
1024, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
|
@@ -126,15 +126,23 @@ class Pipeline:
|
|
126 |
self.pipe.scheduler = LCMScheduler.from_pretrained(
|
127 |
base_model, subfolder="scheduler"
|
128 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
self.pipe.set_progress_bar_config(disable=True)
|
130 |
self.pipe.to(device=device, dtype=torch_dtype)
|
131 |
if device.type != "mps":
|
132 |
self.pipe.unet.to(memory_format=torch.channels_last)
|
133 |
|
134 |
-
# check if computer has less than 64GB of RAM using sys or os
|
135 |
-
if psutil.virtual_memory().total < 64 * 1024**3:
|
136 |
-
self.pipe.enable_attention_slicing()
|
137 |
-
|
138 |
if args.torch_compile:
|
139 |
print("Running torch compile")
|
140 |
self.pipe.unet = torch.compile(
|
|
|
75 |
2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
|
76 |
)
|
77 |
steps: int = Field(
|
78 |
+
1, min=1, max=10, title="Steps", field="range", hide=True, id="steps"
|
79 |
)
|
80 |
width: int = Field(
|
81 |
1024, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
|
|
|
126 |
self.pipe.scheduler = LCMScheduler.from_pretrained(
|
127 |
base_model, subfolder="scheduler"
|
128 |
)
|
129 |
+
if args.sfast:
|
130 |
+
from sfast.compilers.stable_diffusion_pipeline_compiler import (
|
131 |
+
compile,
|
132 |
+
CompilationConfig,
|
133 |
+
)
|
134 |
+
|
135 |
+
config = CompilationConfig.Default()
|
136 |
+
config.enable_xformers = True
|
137 |
+
config.enable_triton = True
|
138 |
+
config.enable_cuda_graph = True
|
139 |
+
self.pipe = compile(self.pipe, config=config)
|
140 |
+
|
141 |
self.pipe.set_progress_bar_config(disable=True)
|
142 |
self.pipe.to(device=device, dtype=torch_dtype)
|
143 |
if device.type != "mps":
|
144 |
self.pipe.unet.to(memory_format=torch.channels_last)
|
145 |
|
|
|
|
|
|
|
|
|
146 |
if args.torch_compile:
|
147 |
print("Running torch compile")
|
148 |
self.pipe.unet = torch.compile(
|
pipelines/txt2img.py
CHANGED
@@ -90,15 +90,23 @@ class Pipeline:
|
|
90 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
91 |
).to(device)
|
92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
self.pipe.set_progress_bar_config(disable=True)
|
94 |
self.pipe.to(device=device, dtype=torch_dtype)
|
95 |
if device.type != "mps":
|
96 |
self.pipe.unet.to(memory_format=torch.channels_last)
|
97 |
|
98 |
-
# check if computer has less than 64GB of RAM using sys or os
|
99 |
-
if psutil.virtual_memory().total < 64 * 1024**3:
|
100 |
-
self.pipe.enable_attention_slicing()
|
101 |
-
|
102 |
if args.torch_compile:
|
103 |
self.pipe.unet = torch.compile(
|
104 |
self.pipe.unet, mode="reduce-overhead", fullgraph=True
|
@@ -109,17 +117,24 @@ class Pipeline:
|
|
109 |
|
110 |
self.pipe(prompt="warmup", num_inference_steps=1, guidance_scale=8.0)
|
111 |
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
|
|
117 |
|
118 |
def predict(self, params: "Pipeline.InputParams") -> Image.Image:
|
119 |
generator = torch.manual_seed(params.seed)
|
120 |
-
prompt_embeds =
|
|
|
|
|
|
|
|
|
|
|
121 |
results = self.pipe(
|
122 |
prompt_embeds=prompt_embeds,
|
|
|
123 |
generator=generator,
|
124 |
num_inference_steps=params.steps,
|
125 |
guidance_scale=params.guidance_scale,
|
|
|
90 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
91 |
).to(device)
|
92 |
|
93 |
+
if args.sfast:
|
94 |
+
from sfast.compilers.stable_diffusion_pipeline_compiler import (
|
95 |
+
compile,
|
96 |
+
CompilationConfig,
|
97 |
+
)
|
98 |
+
|
99 |
+
config = CompilationConfig.Default()
|
100 |
+
config.enable_xformers = True
|
101 |
+
config.enable_triton = True
|
102 |
+
config.enable_cuda_graph = True
|
103 |
+
self.pipe = compile(self.pipe, config=config)
|
104 |
+
|
105 |
self.pipe.set_progress_bar_config(disable=True)
|
106 |
self.pipe.to(device=device, dtype=torch_dtype)
|
107 |
if device.type != "mps":
|
108 |
self.pipe.unet.to(memory_format=torch.channels_last)
|
109 |
|
|
|
|
|
|
|
|
|
110 |
if args.torch_compile:
|
111 |
self.pipe.unet = torch.compile(
|
112 |
self.pipe.unet, mode="reduce-overhead", fullgraph=True
|
|
|
117 |
|
118 |
self.pipe(prompt="warmup", num_inference_steps=1, guidance_scale=8.0)
|
119 |
|
120 |
+
if args.compel:
|
121 |
+
self.compel_proc = Compel(
|
122 |
+
tokenizer=self.pipe.tokenizer,
|
123 |
+
text_encoder=self.pipe.text_encoder,
|
124 |
+
truncate_long_prompts=False,
|
125 |
+
)
|
126 |
|
127 |
def predict(self, params: "Pipeline.InputParams") -> Image.Image:
|
128 |
generator = torch.manual_seed(params.seed)
|
129 |
+
prompt_embeds = None
|
130 |
+
prompt = params.prompt
|
131 |
+
if hasattr(self, "compel_proc"):
|
132 |
+
prompt_embeds = self.compel_proc(params.prompt)
|
133 |
+
prompt = None
|
134 |
+
|
135 |
results = self.pipe(
|
136 |
prompt_embeds=prompt_embeds,
|
137 |
+
prompt=prompt,
|
138 |
generator=generator,
|
139 |
num_inference_steps=params.steps,
|
140 |
guidance_scale=params.guidance_scale,
|
pipelines/txt2imgLora.py
CHANGED
@@ -96,16 +96,15 @@ class Pipeline:
|
|
96 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
97 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
98 |
).to(device)
|
|
|
99 |
self.pipe.scheduler = LCMScheduler.from_config(self.pipe.scheduler.config)
|
100 |
self.pipe.set_progress_bar_config(disable=True)
|
|
|
101 |
self.pipe.to(device=device, dtype=torch_dtype)
|
|
|
102 |
if device.type != "mps":
|
103 |
self.pipe.unet.to(memory_format=torch.channels_last)
|
104 |
|
105 |
-
# check if computer has less than 64GB of RAM using sys or os
|
106 |
-
if psutil.virtual_memory().total < 64 * 1024**3:
|
107 |
-
self.pipe.enable_attention_slicing()
|
108 |
-
|
109 |
if args.torch_compile:
|
110 |
self.pipe.unet = torch.compile(
|
111 |
self.pipe.unet, mode="reduce-overhead", fullgraph=True
|
@@ -116,18 +115,35 @@ class Pipeline:
|
|
116 |
|
117 |
self.pipe(prompt="warmup", num_inference_steps=1, guidance_scale=8.0)
|
118 |
|
119 |
-
|
|
|
|
|
|
|
|
|
120 |
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
|
127 |
def predict(self, params: "Pipeline.InputParams") -> Image.Image:
|
128 |
generator = torch.manual_seed(params.seed)
|
129 |
-
prompt_embeds =
|
|
|
|
|
|
|
|
|
|
|
130 |
results = self.pipe(
|
|
|
131 |
prompt_embeds=prompt_embeds,
|
132 |
generator=generator,
|
133 |
num_inference_steps=params.steps,
|
|
|
96 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
97 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
98 |
).to(device)
|
99 |
+
|
100 |
self.pipe.scheduler = LCMScheduler.from_config(self.pipe.scheduler.config)
|
101 |
self.pipe.set_progress_bar_config(disable=True)
|
102 |
+
self.pipe.load_lora_weights(lcm_lora_id, adapter_name="lcm")
|
103 |
self.pipe.to(device=device, dtype=torch_dtype)
|
104 |
+
|
105 |
if device.type != "mps":
|
106 |
self.pipe.unet.to(memory_format=torch.channels_last)
|
107 |
|
|
|
|
|
|
|
|
|
108 |
if args.torch_compile:
|
109 |
self.pipe.unet = torch.compile(
|
110 |
self.pipe.unet, mode="reduce-overhead", fullgraph=True
|
|
|
115 |
|
116 |
self.pipe(prompt="warmup", num_inference_steps=1, guidance_scale=8.0)
|
117 |
|
118 |
+
if args.sfast:
|
119 |
+
from sfast.compilers.stable_diffusion_pipeline_compiler import (
|
120 |
+
compile,
|
121 |
+
CompilationConfig,
|
122 |
+
)
|
123 |
|
124 |
+
config = CompilationConfig.Default()
|
125 |
+
config.enable_xformers = True
|
126 |
+
config.enable_triton = True
|
127 |
+
config.enable_cuda_graph = True
|
128 |
+
self.pipe = compile(self.pipe, config=config)
|
129 |
+
|
130 |
+
if args.compel:
|
131 |
+
self.compel_proc = Compel(
|
132 |
+
tokenizer=self.pipe.tokenizer,
|
133 |
+
text_encoder=self.pipe.text_encoder,
|
134 |
+
truncate_long_prompts=False,
|
135 |
+
)
|
136 |
|
137 |
def predict(self, params: "Pipeline.InputParams") -> Image.Image:
|
138 |
generator = torch.manual_seed(params.seed)
|
139 |
+
prompt_embeds = None
|
140 |
+
prompt = params.prompt
|
141 |
+
if hasattr(self, "compel_proc"):
|
142 |
+
prompt_embeds = self.compel_proc(params.prompt)
|
143 |
+
prompt = None
|
144 |
+
|
145 |
results = self.pipe(
|
146 |
+
prompt=prompt,
|
147 |
prompt_embeds=prompt_embeds,
|
148 |
generator=generator,
|
149 |
num_inference_steps=params.steps,
|
pipelines/txt2imgLoraSDXL.py
CHANGED
@@ -111,12 +111,22 @@ class Pipeline:
|
|
111 |
self.pipe.scheduler = LCMScheduler.from_config(self.pipe.scheduler.config)
|
112 |
self.pipe.set_progress_bar_config(disable=True)
|
113 |
self.pipe.to(device=device, dtype=torch_dtype).to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
if device.type != "mps":
|
115 |
self.pipe.unet.to(memory_format=torch.channels_last)
|
116 |
|
117 |
-
if psutil.virtual_memory().total < 64 * 1024**3:
|
118 |
-
self.pipe.enable_attention_slicing()
|
119 |
-
|
120 |
self.pipe.compel_proc = Compel(
|
121 |
tokenizer=[self.pipe.tokenizer, self.pipe.tokenizer_2],
|
122 |
text_encoder=[self.pipe.text_encoder, self.pipe.text_encoder_2],
|
@@ -142,14 +152,30 @@ class Pipeline:
|
|
142 |
def predict(self, params: "Pipeline.InputParams") -> Image.Image:
|
143 |
generator = torch.manual_seed(params.seed)
|
144 |
|
145 |
-
|
146 |
-
|
147 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
results = self.pipe(
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
|
|
|
|
153 |
generator=generator,
|
154 |
num_inference_steps=params.steps,
|
155 |
guidance_scale=params.guidance_scale,
|
|
|
111 |
self.pipe.scheduler = LCMScheduler.from_config(self.pipe.scheduler.config)
|
112 |
self.pipe.set_progress_bar_config(disable=True)
|
113 |
self.pipe.to(device=device, dtype=torch_dtype).to(device)
|
114 |
+
|
115 |
+
if args.sfast:
|
116 |
+
from sfast.compilers.stable_diffusion_pipeline_compiler import (
|
117 |
+
compile,
|
118 |
+
CompilationConfig,
|
119 |
+
)
|
120 |
+
|
121 |
+
config = CompilationConfig.Default()
|
122 |
+
config.enable_xformers = True
|
123 |
+
config.enable_triton = True
|
124 |
+
config.enable_cuda_graph = True
|
125 |
+
self.pipe = compile(self.pipe, config=config)
|
126 |
+
|
127 |
if device.type != "mps":
|
128 |
self.pipe.unet.to(memory_format=torch.channels_last)
|
129 |
|
|
|
|
|
|
|
130 |
self.pipe.compel_proc = Compel(
|
131 |
tokenizer=[self.pipe.tokenizer, self.pipe.tokenizer_2],
|
132 |
text_encoder=[self.pipe.text_encoder, self.pipe.text_encoder_2],
|
|
|
152 |
def predict(self, params: "Pipeline.InputParams") -> Image.Image:
|
153 |
generator = torch.manual_seed(params.seed)
|
154 |
|
155 |
+
prompt = params.prompt
|
156 |
+
negative_prompt = params.negative_prompt
|
157 |
+
prompt_embeds = None
|
158 |
+
pooled_prompt_embeds = None
|
159 |
+
negative_prompt_embeds = None
|
160 |
+
negative_pooled_prompt_embeds = None
|
161 |
+
if hasattr(self.pipe, "compel_proc"):
|
162 |
+
_prompt_embeds, pooled_prompt_embeds = self.pipe.compel_proc(
|
163 |
+
[params.prompt, params.negative_prompt]
|
164 |
+
)
|
165 |
+
prompt = None
|
166 |
+
negative_prompt = None
|
167 |
+
prompt_embeds = _prompt_embeds[0:1]
|
168 |
+
pooled_prompt_embeds = pooled_prompt_embeds[0:1]
|
169 |
+
negative_prompt_embeds = _prompt_embeds[1:2]
|
170 |
+
negative_pooled_prompt_embeds = pooled_prompt_embeds[1:2]
|
171 |
+
|
172 |
results = self.pipe(
|
173 |
+
prompt=prompt,
|
174 |
+
negative_prompt=negative_prompt,
|
175 |
+
prompt_embeds=prompt_embeds,
|
176 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
177 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
178 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
179 |
generator=generator,
|
180 |
num_inference_steps=params.steps,
|
181 |
guidance_scale=params.guidance_scale,
|