Spaces:
Runtime error
Runtime error
File size: 3,848 Bytes
cb92d2b 1123781 cb92d2b 1123781 cb92d2b 43148fd 0b5ceff 43148fd d6fedfa 43148fd cb92d2b 1123781 ff9325e 1123781 ff9325e 1123781 ff9325e 1123781 ff9325e cb92d2b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
from diffusers import DiffusionPipeline, AutoencoderTiny
from compel import Compel
import torch
try:
import intel_extension_for_pytorch as ipex # type: ignore
except:
pass
import psutil
from config import Args
from pydantic import BaseModel, Field
from PIL import Image
base_model = "SimianLuo/LCM_Dreamshaper_v7"
taesd_model = "madebyollin/taesd"
default_prompt = "Portrait of The Terminator with , glare pose, detailed, intricate, full of colour, cinematic lighting, trending on artstation, 8k, hyperrealistic, focused, extreme details, unreal engine 5 cinematic, masterpiece"
class Pipeline:
class Info(BaseModel):
name: str = "txt2img"
title: str = "txt2img"
description: str = "Generates an image from a text prompt"
input_mode: str = "text"
class InputParams(BaseModel):
prompt: str = Field(
default_prompt,
title="Prompt",
field="textarea",
id="prompt",
)
seed: int = Field(
2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
)
steps: int = Field(
4, min=2, max=15, title="Steps", field="range", hide=True, id="steps"
)
width: int = Field(
512, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
)
height: int = Field(
512, min=2, max=15, title="Height", disabled=True, hide=True, id="height"
)
guidance_scale: float = Field(
8.0,
min=1,
max=30,
step=0.001,
title="Guidance Scale",
field="range",
hide=True,
id="guidance_scale",
)
def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype):
if args.safety_checker:
self.pipe = DiffusionPipeline.from_pretrained(base_model)
else:
self.pipe = DiffusionPipeline.from_pretrained(
base_model, safety_checker=None
)
if args.use_taesd:
self.pipe.vae = AutoencoderTiny.from_pretrained(
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
)
self.pipe.set_progress_bar_config(disable=True)
self.pipe.to(device=device, dtype=torch_dtype)
self.pipe.unet.to(memory_format=torch.channels_last)
# check if computer has less than 64GB of RAM using sys or os
if psutil.virtual_memory().total < 64 * 1024**3:
self.pipe.enable_attention_slicing()
if args.torch_compile:
self.pipe.unet = torch.compile(
self.pipe.unet, mode="reduce-overhead", fullgraph=True
)
self.pipe.vae = torch.compile(
self.pipe.vae, mode="reduce-overhead", fullgraph=True
)
self.pipe(prompt="warmup", num_inference_steps=1, guidance_scale=8.0)
self.compel_proc = Compel(
tokenizer=self.pipe.tokenizer,
text_encoder=self.pipe.text_encoder,
truncate_long_prompts=False,
)
def predict(self, params: "Pipeline.InputParams") -> Image.Image:
generator = torch.manual_seed(params.seed)
prompt_embeds = self.compel_proc(params.prompt)
results = self.pipe(
prompt_embeds=prompt_embeds,
generator=generator,
num_inference_steps=params.steps,
guidance_scale=params.guidance_scale,
width=params.width,
height=params.height,
output_type="pil",
)
nsfw_content_detected = (
results.nsfw_content_detected[0]
if "nsfw_content_detected" in results
else False
)
if nsfw_content_detected:
return None
return results.images[0]
|