radames commited on
Commit
43a9fe4
·
1 Parent(s): 7d67dc6

rename test

Browse files
Files changed (1) hide show
  1. pipelines/controlnetLoraSD15.py +11 -11
pipelines/controlnetLoraSD15.py CHANGED
@@ -45,12 +45,12 @@ class Pipeline:
45
  field="textarea",
46
  id="prompt",
47
  )
48
- model_id: str = Field(
49
  "plasmo/woolitize",
50
  title="Base Model",
51
  values=list(base_models.keys()),
52
  field="select",
53
- id="model_id",
54
  )
55
  seed: int = Field(
56
  2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
@@ -150,20 +150,20 @@ class Pipeline:
150
  self.pipes = {}
151
 
152
  if args.safety_checker:
153
- for model_id in base_models.keys():
154
  pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
155
- model_id,
156
  controlnet=controlnet_canny,
157
  )
158
- self.pipes[model_id] = pipe
159
  else:
160
- for model_id in base_models.keys():
161
  pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
162
- model_id,
163
  safety_checker=None,
164
  controlnet=controlnet_canny,
165
  )
166
- self.pipes[model_id] = pipe
167
 
168
  self.canny_torch = SobelOperator(device=device)
169
 
@@ -199,10 +199,10 @@ class Pipeline:
199
 
200
  def predict(self, params: "Pipeline.InputParams") -> Image.Image:
201
  generator = torch.manual_seed(params.seed)
202
- print(f"Using model: {params.model_id}")
203
- pipe = self.pipes[params.model_id]
204
 
205
- activation_token = base_models[params.model_id]
206
  prompt = f"{activation_token} {params.prompt}"
207
  prompt_embeds = pipe.compel_proc(prompt)
208
  control_image = self.canny_torch(
 
45
  field="textarea",
46
  id="prompt",
47
  )
48
+ base_model_id: str = Field(
49
  "plasmo/woolitize",
50
  title="Base Model",
51
  values=list(base_models.keys()),
52
  field="select",
53
+ id="base_model_id",
54
  )
55
  seed: int = Field(
56
  2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
 
150
  self.pipes = {}
151
 
152
  if args.safety_checker:
153
+ for base_model_id in base_models.keys():
154
  pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
155
+ base_model_id,
156
  controlnet=controlnet_canny,
157
  )
158
+ self.pipes[base_model_id] = pipe
159
  else:
160
+ for base_model_id in base_models.keys():
161
  pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
162
+ base_model_id,
163
  safety_checker=None,
164
  controlnet=controlnet_canny,
165
  )
166
+ self.pipes[base_model_id] = pipe
167
 
168
  self.canny_torch = SobelOperator(device=device)
169
 
 
199
 
200
  def predict(self, params: "Pipeline.InputParams") -> Image.Image:
201
  generator = torch.manual_seed(params.seed)
202
+ print(f"Using model: {params.base_model_id}")
203
+ pipe = self.pipes[params.base_model_id]
204
 
205
+ activation_token = base_models[params.base_model_id]
206
  prompt = f"{activation_token} {params.prompt}"
207
  prompt_embeds = pipe.compel_proc(prompt)
208
  control_image = self.canny_torch(