Spaces:
Runtime error
Runtime error
remove img2img app
Browse files- app-img2img.py +0 -271
- static/img2img.html +0 -383
app-img2img.py
DELETED
@@ -1,271 +0,0 @@
|
|
1 |
-
import asyncio
|
2 |
-
import json
|
3 |
-
import logging
|
4 |
-
import traceback
|
5 |
-
from pydantic import BaseModel
|
6 |
-
|
7 |
-
from fastapi import FastAPI, WebSocket, HTTPException, WebSocketDisconnect
|
8 |
-
from fastapi.middleware.cors import CORSMiddleware
|
9 |
-
from fastapi.responses import (
|
10 |
-
StreamingResponse,
|
11 |
-
JSONResponse,
|
12 |
-
HTMLResponse,
|
13 |
-
FileResponse,
|
14 |
-
)
|
15 |
-
|
16 |
-
from diffusers import AutoPipelineForImage2Image, AutoencoderTiny
|
17 |
-
from compel import Compel
|
18 |
-
import torch
|
19 |
-
|
20 |
-
try:
|
21 |
-
import intel_extension_for_pytorch as ipex
|
22 |
-
except:
|
23 |
-
pass
|
24 |
-
from PIL import Image
|
25 |
-
import numpy as np
|
26 |
-
import gradio as gr
|
27 |
-
import io
|
28 |
-
import uuid
|
29 |
-
import os
|
30 |
-
import time
|
31 |
-
import psutil
|
32 |
-
|
33 |
-
MAX_QUEUE_SIZE = int(os.environ.get("MAX_QUEUE_SIZE", 0))
|
34 |
-
TIMEOUT = float(os.environ.get("TIMEOUT", 0))
|
35 |
-
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
|
36 |
-
TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None)
|
37 |
-
|
38 |
-
WIDTH = 512
|
39 |
-
HEIGHT = 512
|
40 |
-
# disable tiny autoencoder for better quality speed tradeoff
|
41 |
-
USE_TINY_AUTOENCODER = True
|
42 |
-
|
43 |
-
# check if MPS is available OSX only M1/M2/M3 chips
|
44 |
-
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
|
45 |
-
xpu_available = hasattr(torch, "xpu") and torch.xpu.is_available()
|
46 |
-
device = torch.device(
|
47 |
-
"cuda" if torch.cuda.is_available() else "xpu" if xpu_available else "cpu"
|
48 |
-
)
|
49 |
-
torch_device = device
|
50 |
-
|
51 |
-
# change to torch.float16 to save GPU memory
|
52 |
-
torch_dtype = torch.float32
|
53 |
-
|
54 |
-
print(f"TIMEOUT: {TIMEOUT}")
|
55 |
-
print(f"SAFETY_CHECKER: {SAFETY_CHECKER}")
|
56 |
-
print(f"MAX_QUEUE_SIZE: {MAX_QUEUE_SIZE}")
|
57 |
-
print(f"device: {device}")
|
58 |
-
|
59 |
-
if mps_available:
|
60 |
-
device = torch.device("mps")
|
61 |
-
torch_device = "cpu"
|
62 |
-
torch_dtype = torch.float32
|
63 |
-
|
64 |
-
if SAFETY_CHECKER == "True":
|
65 |
-
pipe = AutoPipelineForImage2Image.from_pretrained(
|
66 |
-
"SimianLuo/LCM_Dreamshaper_v7",
|
67 |
-
)
|
68 |
-
else:
|
69 |
-
pipe = AutoPipelineForImage2Image.from_pretrained(
|
70 |
-
"SimianLuo/LCM_Dreamshaper_v7",
|
71 |
-
safety_checker=None,
|
72 |
-
)
|
73 |
-
|
74 |
-
if USE_TINY_AUTOENCODER:
|
75 |
-
pipe.vae = AutoencoderTiny.from_pretrained(
|
76 |
-
"madebyollin/taesd", torch_dtype=torch_dtype, use_safetensors=True
|
77 |
-
)
|
78 |
-
pipe.set_progress_bar_config(disable=True)
|
79 |
-
pipe.to(device=torch_device, dtype=torch_dtype).to(device)
|
80 |
-
pipe.unet.to(memory_format=torch.channels_last)
|
81 |
-
|
82 |
-
if psutil.virtual_memory().total < 64 * 1024**3:
|
83 |
-
pipe.enable_attention_slicing()
|
84 |
-
|
85 |
-
if TORCH_COMPILE:
|
86 |
-
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
87 |
-
pipe.vae = torch.compile(pipe.vae, mode="reduce-overhead", fullgraph=True)
|
88 |
-
|
89 |
-
pipe(prompt="warmup", image=[Image.new("RGB", (512, 512))])
|
90 |
-
|
91 |
-
compel_proc = Compel(
|
92 |
-
tokenizer=pipe.tokenizer,
|
93 |
-
text_encoder=pipe.text_encoder,
|
94 |
-
truncate_long_prompts=False,
|
95 |
-
)
|
96 |
-
user_queue_map = {}
|
97 |
-
|
98 |
-
|
99 |
-
class InputParams(BaseModel):
|
100 |
-
seed: int = 2159232
|
101 |
-
prompt: str
|
102 |
-
guidance_scale: float = 8.0
|
103 |
-
strength: float = 0.5
|
104 |
-
steps: int = 4
|
105 |
-
lcm_steps: int = 50
|
106 |
-
width: int = WIDTH
|
107 |
-
height: int = HEIGHT
|
108 |
-
|
109 |
-
|
110 |
-
def predict(
|
111 |
-
input_image: Image.Image, params: InputParams, prompt_embeds: torch.Tensor = None
|
112 |
-
):
|
113 |
-
generator = torch.manual_seed(params.seed)
|
114 |
-
results = pipe(
|
115 |
-
prompt_embeds=prompt_embeds,
|
116 |
-
generator=generator,
|
117 |
-
image=input_image,
|
118 |
-
strength=params.strength,
|
119 |
-
num_inference_steps=params.steps,
|
120 |
-
guidance_scale=params.guidance_scale,
|
121 |
-
width=params.width,
|
122 |
-
height=params.height,
|
123 |
-
original_inference_steps=params.lcm_steps,
|
124 |
-
output_type="pil",
|
125 |
-
)
|
126 |
-
nsfw_content_detected = (
|
127 |
-
results.nsfw_content_detected[0]
|
128 |
-
if "nsfw_content_detected" in results
|
129 |
-
else False
|
130 |
-
)
|
131 |
-
if nsfw_content_detected:
|
132 |
-
return None
|
133 |
-
return results.images[0]
|
134 |
-
|
135 |
-
|
136 |
-
app = FastAPI()
|
137 |
-
app.add_middleware(
|
138 |
-
CORSMiddleware,
|
139 |
-
allow_origins=["*"],
|
140 |
-
allow_credentials=True,
|
141 |
-
allow_methods=["*"],
|
142 |
-
allow_headers=["*"],
|
143 |
-
)
|
144 |
-
|
145 |
-
|
146 |
-
@app.websocket("/ws")
|
147 |
-
async def websocket_endpoint(websocket: WebSocket):
|
148 |
-
await websocket.accept()
|
149 |
-
if MAX_QUEUE_SIZE > 0 and len(user_queue_map) >= MAX_QUEUE_SIZE:
|
150 |
-
print("Server is full")
|
151 |
-
await websocket.send_json({"status": "error", "message": "Server is full"})
|
152 |
-
await websocket.close()
|
153 |
-
return
|
154 |
-
|
155 |
-
try:
|
156 |
-
uid = str(uuid.uuid4())
|
157 |
-
print(f"New user connected: {uid}")
|
158 |
-
await websocket.send_json(
|
159 |
-
{"status": "success", "message": "Connected", "userId": uid}
|
160 |
-
)
|
161 |
-
user_queue_map[uid] = {"queue": asyncio.Queue()}
|
162 |
-
await websocket.send_json(
|
163 |
-
{"status": "start", "message": "Start Streaming", "userId": uid}
|
164 |
-
)
|
165 |
-
await handle_websocket_data(websocket, uid)
|
166 |
-
except WebSocketDisconnect as e:
|
167 |
-
logging.error(f"WebSocket Error: {e}, {uid}")
|
168 |
-
traceback.print_exc()
|
169 |
-
finally:
|
170 |
-
print(f"User disconnected: {uid}")
|
171 |
-
queue_value = user_queue_map.pop(uid, None)
|
172 |
-
queue = queue_value.get("queue", None)
|
173 |
-
if queue:
|
174 |
-
while not queue.empty():
|
175 |
-
try:
|
176 |
-
queue.get_nowait()
|
177 |
-
except asyncio.QueueEmpty:
|
178 |
-
continue
|
179 |
-
|
180 |
-
|
181 |
-
@app.get("/queue_size")
|
182 |
-
async def get_queue_size():
|
183 |
-
queue_size = len(user_queue_map)
|
184 |
-
return JSONResponse({"queue_size": queue_size})
|
185 |
-
|
186 |
-
|
187 |
-
@app.get("/stream/{user_id}")
|
188 |
-
async def stream(user_id: uuid.UUID):
|
189 |
-
uid = str(user_id)
|
190 |
-
try:
|
191 |
-
user_queue = user_queue_map[uid]
|
192 |
-
queue = user_queue["queue"]
|
193 |
-
|
194 |
-
async def generate():
|
195 |
-
last_prompt: str = None
|
196 |
-
prompt_embeds: torch.Tensor = None
|
197 |
-
while True:
|
198 |
-
data = await queue.get()
|
199 |
-
input_image = data["image"]
|
200 |
-
params = data["params"]
|
201 |
-
if input_image is None:
|
202 |
-
continue
|
203 |
-
# avoid recalculate prompt embeds
|
204 |
-
if last_prompt != params.prompt:
|
205 |
-
print("new prompt")
|
206 |
-
prompt_embeds = compel_proc(params.prompt)
|
207 |
-
last_prompt = params.prompt
|
208 |
-
|
209 |
-
image = predict(
|
210 |
-
input_image,
|
211 |
-
params,
|
212 |
-
prompt_embeds,
|
213 |
-
)
|
214 |
-
if image is None:
|
215 |
-
continue
|
216 |
-
frame_data = io.BytesIO()
|
217 |
-
image.save(frame_data, format="JPEG")
|
218 |
-
frame_data = frame_data.getvalue()
|
219 |
-
if frame_data is not None and len(frame_data) > 0:
|
220 |
-
yield b"--frame\r\nContent-Type: image/jpeg\r\n\r\n" + frame_data + b"\r\n"
|
221 |
-
|
222 |
-
await asyncio.sleep(1.0 / 120.0)
|
223 |
-
|
224 |
-
return StreamingResponse(
|
225 |
-
generate(), media_type="multipart/x-mixed-replace;boundary=frame"
|
226 |
-
)
|
227 |
-
except Exception as e:
|
228 |
-
logging.error(f"Streaming Error: {e}, {user_queue_map}")
|
229 |
-
traceback.print_exc()
|
230 |
-
return HTTPException(status_code=404, detail="User not found")
|
231 |
-
|
232 |
-
|
233 |
-
async def handle_websocket_data(websocket: WebSocket, user_id: uuid.UUID):
|
234 |
-
uid = str(user_id)
|
235 |
-
user_queue = user_queue_map[uid]
|
236 |
-
queue = user_queue["queue"]
|
237 |
-
if not queue:
|
238 |
-
return HTTPException(status_code=404, detail="User not found")
|
239 |
-
last_time = time.time()
|
240 |
-
try:
|
241 |
-
while True:
|
242 |
-
data = await websocket.receive_bytes()
|
243 |
-
params = await websocket.receive_json()
|
244 |
-
params = InputParams(**params)
|
245 |
-
pil_image = Image.open(io.BytesIO(data))
|
246 |
-
|
247 |
-
while not queue.empty():
|
248 |
-
try:
|
249 |
-
queue.get_nowait()
|
250 |
-
except asyncio.QueueEmpty:
|
251 |
-
continue
|
252 |
-
await queue.put({"image": pil_image, "params": params})
|
253 |
-
if TIMEOUT > 0 and time.time() - last_time > TIMEOUT:
|
254 |
-
await websocket.send_json(
|
255 |
-
{
|
256 |
-
"status": "timeout",
|
257 |
-
"message": "Your session has ended",
|
258 |
-
"userId": uid,
|
259 |
-
}
|
260 |
-
)
|
261 |
-
await websocket.close()
|
262 |
-
return
|
263 |
-
|
264 |
-
except Exception as e:
|
265 |
-
logging.error(f"Error: {e}")
|
266 |
-
traceback.print_exc()
|
267 |
-
|
268 |
-
|
269 |
-
@app.get("/", response_class=HTMLResponse)
|
270 |
-
async def root():
|
271 |
-
return FileResponse("./static/img2img.html")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static/img2img.html
DELETED
@@ -1,383 +0,0 @@
|
|
1 |
-
<!doctype html>
|
2 |
-
<html>
|
3 |
-
|
4 |
-
<head>
|
5 |
-
<meta charset="UTF-8">
|
6 |
-
<title>Real-Time Latent Consistency Model</title>
|
7 |
-
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
8 |
-
<script
|
9 |
-
src="https://cdnjs.cloudflare.com/ajax/libs/iframe-resizer/4.3.1/iframeResizer.contentWindow.min.js"></script>
|
10 |
-
<script src="https://cdn.jsdelivr.net/npm/piexifjs@1.0.6/piexif.min.js"></script>
|
11 |
-
<script src="https://cdn.tailwindcss.com"></script>
|
12 |
-
<style type="text/tailwindcss">
|
13 |
-
.button {
|
14 |
-
@apply bg-gray-700 hover:bg-gray-800 text-white font-normal p-2 rounded disabled:bg-gray-300 dark:disabled:bg-gray-700 disabled:cursor-not-allowed dark:disabled:text-black
|
15 |
-
}
|
16 |
-
</style>
|
17 |
-
<script type="module">
|
18 |
-
const getValue = (id) => {
|
19 |
-
const el = document.querySelector(`${id}`)
|
20 |
-
if (el.type === "checkbox")
|
21 |
-
return el.checked;
|
22 |
-
return el.value;
|
23 |
-
}
|
24 |
-
|
25 |
-
const startBtn = document.querySelector("#start");
|
26 |
-
const stopBtn = document.querySelector("#stop");
|
27 |
-
const videoEl = document.querySelector("#webcam");
|
28 |
-
const imageEl = document.querySelector("#player");
|
29 |
-
const queueSizeEl = document.querySelector("#queue_size");
|
30 |
-
const errorEl = document.querySelector("#error");
|
31 |
-
const snapBtn = document.querySelector("#snap");
|
32 |
-
const webcamsEl = document.querySelector("#webcams");
|
33 |
-
|
34 |
-
function LCMLive(webcamVideo, liveImage) {
|
35 |
-
let websocket;
|
36 |
-
|
37 |
-
async function start() {
|
38 |
-
return new Promise((resolve, reject) => {
|
39 |
-
const websocketURL = `${window.location.protocol === "https:" ? "wss" : "ws"
|
40 |
-
}:${window.location.host}/ws`;
|
41 |
-
|
42 |
-
const socket = new WebSocket(websocketURL);
|
43 |
-
socket.onopen = () => {
|
44 |
-
console.log("Connected to websocket");
|
45 |
-
};
|
46 |
-
socket.onclose = () => {
|
47 |
-
console.log("Disconnected from websocket");
|
48 |
-
stop();
|
49 |
-
resolve({ "status": "disconnected" });
|
50 |
-
};
|
51 |
-
socket.onerror = (err) => {
|
52 |
-
console.error(err);
|
53 |
-
reject(err);
|
54 |
-
};
|
55 |
-
socket.onmessage = (event) => {
|
56 |
-
const data = JSON.parse(event.data);
|
57 |
-
switch (data.status) {
|
58 |
-
case "success":
|
59 |
-
break;
|
60 |
-
case "start":
|
61 |
-
const userId = data.userId;
|
62 |
-
initVideoStream(userId);
|
63 |
-
break;
|
64 |
-
case "timeout":
|
65 |
-
stop();
|
66 |
-
resolve({ "status": "timeout" });
|
67 |
-
case "error":
|
68 |
-
stop();
|
69 |
-
reject(data.message);
|
70 |
-
|
71 |
-
}
|
72 |
-
};
|
73 |
-
websocket = socket;
|
74 |
-
})
|
75 |
-
}
|
76 |
-
function switchCamera() {
|
77 |
-
const constraints = {
|
78 |
-
audio: false,
|
79 |
-
video: { width: 1024, height: 1024, deviceId: mediaDevices[webcamsEl.value].deviceId }
|
80 |
-
};
|
81 |
-
navigator.mediaDevices
|
82 |
-
.getUserMedia(constraints)
|
83 |
-
.then((mediaStream) => {
|
84 |
-
webcamVideo.removeEventListener("timeupdate", videoTimeUpdateHandler);
|
85 |
-
webcamVideo.srcObject = mediaStream;
|
86 |
-
webcamVideo.onloadedmetadata = () => {
|
87 |
-
webcamVideo.play();
|
88 |
-
webcamVideo.addEventListener("timeupdate", videoTimeUpdateHandler);
|
89 |
-
};
|
90 |
-
})
|
91 |
-
.catch((err) => {
|
92 |
-
console.error(`${err.name}: ${err.message}`);
|
93 |
-
});
|
94 |
-
}
|
95 |
-
|
96 |
-
async function videoTimeUpdateHandler() {
|
97 |
-
const dimension = getValue("input[name=dimension]:checked");
|
98 |
-
const [WIDTH, HEIGHT] = JSON.parse(dimension);
|
99 |
-
|
100 |
-
const canvas = new OffscreenCanvas(WIDTH, HEIGHT);
|
101 |
-
const videoW = webcamVideo.videoWidth;
|
102 |
-
const videoH = webcamVideo.videoHeight;
|
103 |
-
const aspectRatio = WIDTH / HEIGHT;
|
104 |
-
|
105 |
-
const ctx = canvas.getContext("2d");
|
106 |
-
ctx.drawImage(webcamVideo, videoW / 2 - videoH * aspectRatio / 2, 0, videoH * aspectRatio, videoH, 0, 0, WIDTH, HEIGHT)
|
107 |
-
const blob = await canvas.convertToBlob({ type: "image/jpeg", quality: 1 });
|
108 |
-
websocket.send(blob);
|
109 |
-
websocket.send(JSON.stringify({
|
110 |
-
"seed": getValue("#seed"),
|
111 |
-
"prompt": getValue("#prompt"),
|
112 |
-
"guidance_scale": getValue("#guidance-scale"),
|
113 |
-
"strength": getValue("#strength"),
|
114 |
-
"steps": getValue("#steps"),
|
115 |
-
"lcm_steps": getValue("#lcm_steps"),
|
116 |
-
"width": WIDTH,
|
117 |
-
"height": HEIGHT,
|
118 |
-
}));
|
119 |
-
}
|
120 |
-
let mediaDevices = [];
|
121 |
-
async function initVideoStream(userId) {
|
122 |
-
liveImage.src = `/stream/${userId}`;
|
123 |
-
await navigator.mediaDevices.enumerateDevices()
|
124 |
-
.then(devices => {
|
125 |
-
const cameras = devices.filter(device => device.kind === 'videoinput');
|
126 |
-
mediaDevices = cameras;
|
127 |
-
webcamsEl.innerHTML = "";
|
128 |
-
cameras.forEach((camera, index) => {
|
129 |
-
const option = document.createElement("option");
|
130 |
-
option.value = index;
|
131 |
-
option.innerText = camera.label;
|
132 |
-
webcamsEl.appendChild(option);
|
133 |
-
option.selected = index === 0;
|
134 |
-
});
|
135 |
-
webcamsEl.addEventListener("change", switchCamera);
|
136 |
-
})
|
137 |
-
.catch(err => {
|
138 |
-
console.error(err);
|
139 |
-
});
|
140 |
-
const constraints = {
|
141 |
-
audio: false,
|
142 |
-
video: { width: 1024, height: 1024, deviceId: mediaDevices[0].deviceId }
|
143 |
-
};
|
144 |
-
navigator.mediaDevices
|
145 |
-
.getUserMedia(constraints)
|
146 |
-
.then((mediaStream) => {
|
147 |
-
webcamVideo.srcObject = mediaStream;
|
148 |
-
webcamVideo.onloadedmetadata = () => {
|
149 |
-
webcamVideo.play();
|
150 |
-
webcamVideo.addEventListener("timeupdate", videoTimeUpdateHandler);
|
151 |
-
};
|
152 |
-
})
|
153 |
-
.catch((err) => {
|
154 |
-
console.error(`${err.name}: ${err.message}`);
|
155 |
-
});
|
156 |
-
}
|
157 |
-
|
158 |
-
async function stop() {
|
159 |
-
websocket.close();
|
160 |
-
navigator.mediaDevices.getUserMedia({ video: true }).then((mediaStream) => {
|
161 |
-
mediaStream.getTracks().forEach((track) => track.stop());
|
162 |
-
});
|
163 |
-
webcamVideo.removeEventListener("timeupdate", videoTimeUpdateHandler);
|
164 |
-
webcamsEl.removeEventListener("change", switchCamera);
|
165 |
-
webcamVideo.srcObject = null;
|
166 |
-
}
|
167 |
-
return {
|
168 |
-
start,
|
169 |
-
stop
|
170 |
-
}
|
171 |
-
}
|
172 |
-
function toggleMessage(type) {
|
173 |
-
errorEl.hidden = false;
|
174 |
-
errorEl.scrollIntoView();
|
175 |
-
switch (type) {
|
176 |
-
case "error":
|
177 |
-
errorEl.innerText = "To many users are using the same GPU, please try again later.";
|
178 |
-
errorEl.classList.toggle("bg-red-300", "text-red-900");
|
179 |
-
break;
|
180 |
-
case "success":
|
181 |
-
errorEl.innerText = "Your session has ended, please start a new one.";
|
182 |
-
errorEl.classList.toggle("bg-green-300", "text-green-900");
|
183 |
-
break;
|
184 |
-
}
|
185 |
-
setTimeout(() => {
|
186 |
-
errorEl.hidden = true;
|
187 |
-
}, 2000);
|
188 |
-
}
|
189 |
-
function snapImage() {
|
190 |
-
try {
|
191 |
-
const zeroth = {};
|
192 |
-
const exif = {};
|
193 |
-
const gps = {};
|
194 |
-
zeroth[piexif.ImageIFD.Make] = "LCM Image-to-Image";
|
195 |
-
zeroth[piexif.ImageIFD.ImageDescription] = `prompt: ${getValue("#prompt")} | seed: ${getValue("#seed")} | guidance_scale: ${getValue("#guidance-scale")} | strength: ${getValue("#strength")} | lcm_steps: ${getValue("#lcm_steps")} | steps: ${getValue("#steps")}`;
|
196 |
-
zeroth[piexif.ImageIFD.Software] = "https://github.com/radames/Real-Time-Latent-Consistency-Model";
|
197 |
-
|
198 |
-
exif[piexif.ExifIFD.DateTimeOriginal] = new Date().toISOString();
|
199 |
-
|
200 |
-
const exifObj = { "0th": zeroth, "Exif": exif, "GPS": gps };
|
201 |
-
const exifBytes = piexif.dump(exifObj);
|
202 |
-
|
203 |
-
const canvas = document.createElement("canvas");
|
204 |
-
canvas.width = imageEl.naturalWidth;
|
205 |
-
canvas.height = imageEl.naturalHeight;
|
206 |
-
const ctx = canvas.getContext("2d");
|
207 |
-
ctx.drawImage(imageEl, 0, 0);
|
208 |
-
const dataURL = canvas.toDataURL("image/jpeg");
|
209 |
-
const withExif = piexif.insert(exifBytes, dataURL);
|
210 |
-
|
211 |
-
const a = document.createElement("a");
|
212 |
-
a.href = withExif;
|
213 |
-
a.download = `lcm_txt_2_img${Date.now()}.png`;
|
214 |
-
a.click();
|
215 |
-
} catch (err) {
|
216 |
-
console.log(err);
|
217 |
-
}
|
218 |
-
}
|
219 |
-
|
220 |
-
|
221 |
-
const lcmLive = LCMLive(videoEl, imageEl);
|
222 |
-
startBtn.addEventListener("click", async () => {
|
223 |
-
try {
|
224 |
-
startBtn.disabled = true;
|
225 |
-
snapBtn.disabled = false;
|
226 |
-
const res = await lcmLive.start();
|
227 |
-
startBtn.disabled = false;
|
228 |
-
if (res.status === "timeout")
|
229 |
-
toggleMessage("success")
|
230 |
-
} catch (err) {
|
231 |
-
console.log(err);
|
232 |
-
toggleMessage("error")
|
233 |
-
startBtn.disabled = false;
|
234 |
-
}
|
235 |
-
});
|
236 |
-
stopBtn.addEventListener("click", () => {
|
237 |
-
lcmLive.stop();
|
238 |
-
});
|
239 |
-
window.addEventListener("beforeunload", () => {
|
240 |
-
lcmLive.stop();
|
241 |
-
});
|
242 |
-
snapBtn.addEventListener("click", snapImage);
|
243 |
-
setInterval(() =>
|
244 |
-
fetch("/queue_size")
|
245 |
-
.then((res) => res.json())
|
246 |
-
.then((data) => {
|
247 |
-
queueSizeEl.innerText = data.queue_size;
|
248 |
-
})
|
249 |
-
.catch((err) => {
|
250 |
-
console.log(err);
|
251 |
-
})
|
252 |
-
, 5000);
|
253 |
-
</script>
|
254 |
-
</head>
|
255 |
-
|
256 |
-
<body class="text-black dark:bg-gray-900 dark:text-white">
|
257 |
-
<div class="fixed right-2 top-2 p-4 font-bold text-sm rounded-lg max-w-xs text-center" id="error">
|
258 |
-
</div>
|
259 |
-
<main class="container mx-auto px-4 py-4 max-w-4xl flex flex-col gap-4">
|
260 |
-
<article class="text-center max-w-xl mx-auto">
|
261 |
-
<h1 class="text-3xl font-bold">Real-Time Latent Consistency Model</h1>
|
262 |
-
<h2 class="text-2xl font-bold mb-4">Image to Image</h2>
|
263 |
-
<p class="text-sm">
|
264 |
-
This demo showcases
|
265 |
-
<a href="https://huggingface.co/SimianLuo/LCM_Dreamshaper_v7" target="_blank"
|
266 |
-
class="text-blue-500 underline hover:no-underline">LCM</a> Image to Image pipeline
|
267 |
-
using
|
268 |
-
<a href="https://github.com/huggingface/diffusers/tree/main/examples/community#latent-consistency-pipeline"
|
269 |
-
target="_blank" class="text-blue-500 underline hover:no-underline">Diffusers</a> with a MJPEG
|
270 |
-
stream server.
|
271 |
-
</p>
|
272 |
-
<p class="text-sm">
|
273 |
-
There are <span id="queue_size" class="font-bold">0</span> user(s) sharing the same GPU, affecting
|
274 |
-
real-time performance. Maximum queue size is 4. <a
|
275 |
-
href="https://huggingface.co/spaces/radames/Real-Time-Latent-Consistency-Model?duplicate=true"
|
276 |
-
target="_blank" class="text-blue-500 underline hover:no-underline">Duplicate</a> and run it on your
|
277 |
-
own GPU.
|
278 |
-
</p>
|
279 |
-
</article>
|
280 |
-
<div>
|
281 |
-
<h2 class="font-medium">Prompt</h2>
|
282 |
-
<p class="text-sm text-gray-500">
|
283 |
-
Change the prompt to generate different images, accepts <a
|
284 |
-
href="https://github.com/damian0815/compel/blob/main/doc/syntax.md" target="_blank"
|
285 |
-
class="text-blue-500 underline hover:no-underline">Compel</a> syntax.
|
286 |
-
</p>
|
287 |
-
<div class="flex text-normal px-1 py-1 border border-gray-700 rounded-md items-center">
|
288 |
-
<textarea type="text" id="prompt" class="font-light w-full px-3 py-2 mx-1 outline-none dark:text-black"
|
289 |
-
title="Prompt, this is an example, feel free to modify"
|
290 |
-
placeholder="Add your prompt here...">Portrait of The Terminator with , glare pose, detailed, intricate, full of colour, cinematic lighting, trending on artstation, 8k, hyperrealistic, focused, extreme details, unreal engine 5, cinematic, masterpiece</textarea>
|
291 |
-
</div>
|
292 |
-
|
293 |
-
</div>
|
294 |
-
<div class="">
|
295 |
-
<details>
|
296 |
-
<summary class="font-medium cursor-pointer">Advanced Options</summary>
|
297 |
-
<div class="grid grid-cols-3 sm:grid-cols-6 items-center gap-3 py-3">
|
298 |
-
<label for="webcams" class="text-sm font-medium">Camera Options: </label>
|
299 |
-
<select id="webcams" class="text-sm border-2 border-gray-500 rounded-md font-light dark:text-black">
|
300 |
-
</select>
|
301 |
-
<div></div>
|
302 |
-
<label class="text-sm font-medium " for="steps">Inference Steps
|
303 |
-
</label>
|
304 |
-
<input type="range" id="steps" name="steps" min="1" max="20" value="4"
|
305 |
-
oninput="this.nextElementSibling.value = Number(this.value)">
|
306 |
-
<output class="text-xs w-[50px] text-center font-light px-1 py-1 border border-gray-700 rounded-md">
|
307 |
-
4</output>
|
308 |
-
<!-- -->
|
309 |
-
<label class="text-sm font-medium" for="lcm_steps">LCM Inference Steps
|
310 |
-
</label>
|
311 |
-
<input type="range" id="lcm_steps" name="lcm_steps" min="2" max="60" value="50"
|
312 |
-
oninput="this.nextElementSibling.value = Number(this.value)">
|
313 |
-
<output class="text-xs w-[50px] text-center font-light px-1 py-1 border border-gray-700 rounded-md">
|
314 |
-
50</output>
|
315 |
-
<!-- -->
|
316 |
-
<label class="text-sm font-medium" for="guidance-scale">Guidance Scale
|
317 |
-
</label>
|
318 |
-
<input type="range" id="guidance-scale" name="guidance-scale" min="0" max="30" step="0.001"
|
319 |
-
value="8.0" oninput="this.nextElementSibling.value = Number(this.value).toFixed(2)">
|
320 |
-
<output class="text-xs w-[50px] text-center font-light px-1 py-1 border border-gray-700 rounded-md">
|
321 |
-
8.0</output>
|
322 |
-
<!-- -->
|
323 |
-
<label class="text-sm font-medium" for="strength">Strength</label>
|
324 |
-
<input type="range" id="strength" name="strength" min="0.1" max="1" step="0.001" value="0.50"
|
325 |
-
oninput="this.nextElementSibling.value = Number(this.value).toFixed(2)">
|
326 |
-
<output class="text-xs w-[50px] text-center font-light px-1 py-1 border border-gray-700 rounded-md">
|
327 |
-
0.5</output>
|
328 |
-
<!-- -->
|
329 |
-
<label class="text-sm font-medium" for="seed">Seed</label>
|
330 |
-
<input type="number" id="seed" name="seed" value="299792458"
|
331 |
-
class="font-light border border-gray-700 text-right rounded-md p-2 dark:text-black">
|
332 |
-
<button
|
333 |
-
onclick="document.querySelector('#seed').value = Math.floor(Math.random() * Number.MAX_SAFE_INTEGER)"
|
334 |
-
class="button">
|
335 |
-
Rand
|
336 |
-
</button>
|
337 |
-
<!-- -->
|
338 |
-
<!-- -->
|
339 |
-
<label class="text-sm font-medium" for="dimension">Image Dimensions</label>
|
340 |
-
<div class="col-span-2 flex gap-2">
|
341 |
-
<div class="flex gap-1">
|
342 |
-
<input type="radio" id="dimension512" name="dimension" value="[512,512]" checked
|
343 |
-
class="cursor-pointer">
|
344 |
-
<label for="dimension512" class="text-sm cursor-pointer">512x512</label>
|
345 |
-
</div>
|
346 |
-
<div class="flex gap-1">
|
347 |
-
<input type="radio" id="dimension768" name="dimension" value="[768,768]"
|
348 |
-
lass="cursor-pointer">
|
349 |
-
<label for="dimension768" class="text-sm cursor-pointer">768x768</label>
|
350 |
-
</div>
|
351 |
-
</div>
|
352 |
-
<!-- -->
|
353 |
-
</div>
|
354 |
-
</details>
|
355 |
-
</div>
|
356 |
-
<div class="flex gap-3">
|
357 |
-
<button id="start" class="button">
|
358 |
-
Start
|
359 |
-
</button>
|
360 |
-
<button id="stop" class="button">
|
361 |
-
Stop
|
362 |
-
</button>
|
363 |
-
<button id="snap" disabled class="button ml-auto">
|
364 |
-
Snapshot
|
365 |
-
</button>
|
366 |
-
</div>
|
367 |
-
<div class="relative rounded-lg border border-slate-300 overflow-hidden">
|
368 |
-
<img id="player" class="w-full aspect-square rounded-lg "
|
369 |
-
src="">
|
370 |
-
<div class="absolute top-0 left-0 w-1/4 aspect-square">
|
371 |
-
<video id="webcam" class="w-full aspect-square relative z-10 object-cover" playsinline autoplay muted
|
372 |
-
loop></video>
|
373 |
-
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 448" width="100"
|
374 |
-
class="w-full p-4 absolute top-0 opacity-20 z-0">
|
375 |
-
<path fill="currentColor"
|
376 |
-
d="M224 256a128 128 0 1 0 0-256 128 128 0 1 0 0 256zm-45.7 48A178.3 178.3 0 0 0 0 482.3 29.7 29.7 0 0 0 29.7 512h388.6a29.7 29.7 0 0 0 29.7-29.7c0-98.5-79.8-178.3-178.3-178.3h-91.4z" />
|
377 |
-
</svg>
|
378 |
-
</div>
|
379 |
-
</div>
|
380 |
-
</main>
|
381 |
-
</body>
|
382 |
-
|
383 |
-
</html>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|