Spaces:
Running
on
A100
Running
on
A100
all static one folder
Browse files- app-controlnet.py +22 -8
- app-img2img.py +14 -5
- app-txt2img.py +10 -4
- img2img/tailwind.config.js +0 -0
- controlnet/index.html → static/controlnet.html +0 -0
- img2img/index.html → static/img2img.html +0 -0
- {controlnet → static}/tailwind.config.js +0 -0
- txt2img/index.html → static/txt2img.html +0 -0
- txt2img/tailwind.config.js +0 -0
app-controlnet.py
CHANGED
@@ -6,15 +6,20 @@ from pydantic import BaseModel
|
|
6 |
|
7 |
from fastapi import FastAPI, WebSocket, HTTPException, WebSocketDisconnect
|
8 |
from fastapi.middleware.cors import CORSMiddleware
|
9 |
-
from fastapi.responses import
|
10 |
-
|
|
|
|
|
|
|
|
|
11 |
|
12 |
from diffusers import AutoencoderTiny, ControlNetModel
|
13 |
from latent_consistency_controlnet import LatentConsistencyModelPipeline_controlnet
|
14 |
from compel import Compel
|
15 |
import torch
|
16 |
|
17 |
-
from canny_gpu import SobelOperator
|
|
|
18 |
# from controlnet_aux import OpenposeDetector
|
19 |
# import cv2
|
20 |
|
@@ -35,7 +40,7 @@ import psutil
|
|
35 |
MAX_QUEUE_SIZE = int(os.environ.get("MAX_QUEUE_SIZE", 0))
|
36 |
TIMEOUT = float(os.environ.get("TIMEOUT", 0))
|
37 |
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
|
38 |
-
TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None)
|
39 |
WIDTH = 512
|
40 |
HEIGHT = 512
|
41 |
# disable tiny autoencoder for better quality speed tradeoff
|
@@ -110,7 +115,11 @@ if TORCH_COMPILE:
|
|
110 |
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
111 |
pipe.vae = torch.compile(pipe.vae, mode="reduce-overhead", fullgraph=True)
|
112 |
|
113 |
-
pipe(
|
|
|
|
|
|
|
|
|
114 |
|
115 |
|
116 |
user_queue_map = {}
|
@@ -132,12 +141,15 @@ class InputParams(BaseModel):
|
|
132 |
canny_high_threshold: float = 0.78
|
133 |
debug_canny: bool = False
|
134 |
|
|
|
135 |
def predict(
|
136 |
input_image: Image.Image, params: InputParams, prompt_embeds: torch.Tensor = None
|
137 |
):
|
138 |
generator = torch.manual_seed(params.seed)
|
139 |
-
|
140 |
-
control_image = canny_torch(
|
|
|
|
|
141 |
results = pipe(
|
142 |
control_image=control_image,
|
143 |
prompt_embeds=prompt_embeds,
|
@@ -305,4 +317,6 @@ async def handle_websocket_data(websocket: WebSocket, user_id: uuid.UUID):
|
|
305 |
traceback.print_exc()
|
306 |
|
307 |
|
308 |
-
app.
|
|
|
|
|
|
6 |
|
7 |
from fastapi import FastAPI, WebSocket, HTTPException, WebSocketDisconnect
|
8 |
from fastapi.middleware.cors import CORSMiddleware
|
9 |
+
from fastapi.responses import (
|
10 |
+
StreamingResponse,
|
11 |
+
JSONResponse,
|
12 |
+
HTMLResponse,
|
13 |
+
FileResponse,
|
14 |
+
)
|
15 |
|
16 |
from diffusers import AutoencoderTiny, ControlNetModel
|
17 |
from latent_consistency_controlnet import LatentConsistencyModelPipeline_controlnet
|
18 |
from compel import Compel
|
19 |
import torch
|
20 |
|
21 |
+
from canny_gpu import SobelOperator
|
22 |
+
|
23 |
# from controlnet_aux import OpenposeDetector
|
24 |
# import cv2
|
25 |
|
|
|
40 |
MAX_QUEUE_SIZE = int(os.environ.get("MAX_QUEUE_SIZE", 0))
|
41 |
TIMEOUT = float(os.environ.get("TIMEOUT", 0))
|
42 |
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
|
43 |
+
TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None)
|
44 |
WIDTH = 512
|
45 |
HEIGHT = 512
|
46 |
# disable tiny autoencoder for better quality speed tradeoff
|
|
|
115 |
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
116 |
pipe.vae = torch.compile(pipe.vae, mode="reduce-overhead", fullgraph=True)
|
117 |
|
118 |
+
pipe(
|
119 |
+
prompt="warmup",
|
120 |
+
image=[Image.new("RGB", (768, 768))],
|
121 |
+
control_image=[Image.new("RGB", (768, 768))],
|
122 |
+
)
|
123 |
|
124 |
|
125 |
user_queue_map = {}
|
|
|
141 |
canny_high_threshold: float = 0.78
|
142 |
debug_canny: bool = False
|
143 |
|
144 |
+
|
145 |
def predict(
|
146 |
input_image: Image.Image, params: InputParams, prompt_embeds: torch.Tensor = None
|
147 |
):
|
148 |
generator = torch.manual_seed(params.seed)
|
149 |
+
|
150 |
+
control_image = canny_torch(
|
151 |
+
input_image, params.canny_low_threshold, params.canny_high_threshold
|
152 |
+
)
|
153 |
results = pipe(
|
154 |
control_image=control_image,
|
155 |
prompt_embeds=prompt_embeds,
|
|
|
317 |
traceback.print_exc()
|
318 |
|
319 |
|
320 |
+
@app.get("/", response_class=HTMLResponse)
|
321 |
+
async def root():
|
322 |
+
return FileResponse("./static/controlnet.html")
|
app-img2img.py
CHANGED
@@ -6,8 +6,12 @@ from pydantic import BaseModel
|
|
6 |
|
7 |
from fastapi import FastAPI, WebSocket, HTTPException, WebSocketDisconnect
|
8 |
from fastapi.middleware.cors import CORSMiddleware
|
9 |
-
from fastapi.responses import
|
10 |
-
|
|
|
|
|
|
|
|
|
11 |
|
12 |
from diffusers import AutoPipelineForImage2Image, AutoencoderTiny
|
13 |
from compel import Compel
|
@@ -29,7 +33,7 @@ import psutil
|
|
29 |
MAX_QUEUE_SIZE = int(os.environ.get("MAX_QUEUE_SIZE", 0))
|
30 |
TIMEOUT = float(os.environ.get("TIMEOUT", 0))
|
31 |
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
|
32 |
-
TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None)
|
33 |
|
34 |
WIDTH = 512
|
35 |
HEIGHT = 512
|
@@ -102,7 +106,10 @@ class InputParams(BaseModel):
|
|
102 |
width: int = WIDTH
|
103 |
height: int = HEIGHT
|
104 |
|
105 |
-
|
|
|
|
|
|
|
106 |
generator = torch.manual_seed(params.seed)
|
107 |
results = pipe(
|
108 |
prompt_embeds=prompt_embeds,
|
@@ -259,4 +266,6 @@ async def handle_websocket_data(websocket: WebSocket, user_id: uuid.UUID):
|
|
259 |
traceback.print_exc()
|
260 |
|
261 |
|
262 |
-
app.
|
|
|
|
|
|
6 |
|
7 |
from fastapi import FastAPI, WebSocket, HTTPException, WebSocketDisconnect
|
8 |
from fastapi.middleware.cors import CORSMiddleware
|
9 |
+
from fastapi.responses import (
|
10 |
+
StreamingResponse,
|
11 |
+
JSONResponse,
|
12 |
+
HTMLResponse,
|
13 |
+
FileResponse,
|
14 |
+
)
|
15 |
|
16 |
from diffusers import AutoPipelineForImage2Image, AutoencoderTiny
|
17 |
from compel import Compel
|
|
|
33 |
MAX_QUEUE_SIZE = int(os.environ.get("MAX_QUEUE_SIZE", 0))
|
34 |
TIMEOUT = float(os.environ.get("TIMEOUT", 0))
|
35 |
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
|
36 |
+
TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None)
|
37 |
|
38 |
WIDTH = 512
|
39 |
HEIGHT = 512
|
|
|
106 |
width: int = WIDTH
|
107 |
height: int = HEIGHT
|
108 |
|
109 |
+
|
110 |
+
def predict(
|
111 |
+
input_image: Image.Image, params: InputParams, prompt_embeds: torch.Tensor = None
|
112 |
+
):
|
113 |
generator = torch.manual_seed(params.seed)
|
114 |
results = pipe(
|
115 |
prompt_embeds=prompt_embeds,
|
|
|
266 |
traceback.print_exc()
|
267 |
|
268 |
|
269 |
+
@app.get("/", response_class=HTMLResponse)
|
270 |
+
async def root():
|
271 |
+
return FileResponse("./static/img2img.html")
|
app-txt2img.py
CHANGED
@@ -6,8 +6,12 @@ from pydantic import BaseModel
|
|
6 |
|
7 |
from fastapi import FastAPI, WebSocket, HTTPException, WebSocketDisconnect
|
8 |
from fastapi.middleware.cors import CORSMiddleware
|
9 |
-
from fastapi.responses import
|
10 |
-
|
|
|
|
|
|
|
|
|
11 |
|
12 |
from diffusers import DiffusionPipeline, AutoencoderTiny
|
13 |
from compel import Compel
|
@@ -30,7 +34,7 @@ import psutil
|
|
30 |
MAX_QUEUE_SIZE = int(os.environ.get("MAX_QUEUE_SIZE", 0))
|
31 |
TIMEOUT = float(os.environ.get("TIMEOUT", 0))
|
32 |
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
|
33 |
-
TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None)
|
34 |
|
35 |
WIDTH = 768
|
36 |
HEIGHT = 768
|
@@ -246,4 +250,6 @@ async def handle_websocket_data(websocket: WebSocket, user_id: uuid.UUID):
|
|
246 |
traceback.print_exc()
|
247 |
|
248 |
|
249 |
-
app.
|
|
|
|
|
|
6 |
|
7 |
from fastapi import FastAPI, WebSocket, HTTPException, WebSocketDisconnect
|
8 |
from fastapi.middleware.cors import CORSMiddleware
|
9 |
+
from fastapi.responses import (
|
10 |
+
StreamingResponse,
|
11 |
+
JSONResponse,
|
12 |
+
HTMLResponse,
|
13 |
+
FileResponse,
|
14 |
+
)
|
15 |
|
16 |
from diffusers import DiffusionPipeline, AutoencoderTiny
|
17 |
from compel import Compel
|
|
|
34 |
MAX_QUEUE_SIZE = int(os.environ.get("MAX_QUEUE_SIZE", 0))
|
35 |
TIMEOUT = float(os.environ.get("TIMEOUT", 0))
|
36 |
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
|
37 |
+
TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None)
|
38 |
|
39 |
WIDTH = 768
|
40 |
HEIGHT = 768
|
|
|
250 |
traceback.print_exc()
|
251 |
|
252 |
|
253 |
+
@app.get("/", response_class=HTMLResponse)
|
254 |
+
async def root():
|
255 |
+
return FileResponse("./static/txt2img.html")
|
img2img/tailwind.config.js
DELETED
File without changes
|
controlnet/index.html → static/controlnet.html
RENAMED
File without changes
|
img2img/index.html → static/img2img.html
RENAMED
File without changes
|
{controlnet → static}/tailwind.config.js
RENAMED
File without changes
|
txt2img/index.html → static/txt2img.html
RENAMED
File without changes
|
txt2img/tailwind.config.js
DELETED
File without changes
|