Spaces:
Running
on
A100
Running
on
A100
more
Browse files- app-controlnet.py +10 -4
- app-img2img.py +8 -2
- app-txt2img.py +8 -2
- requirements.txt +1 -1
app-controlnet.py
CHANGED
@@ -35,6 +35,7 @@ import psutil
|
|
35 |
MAX_QUEUE_SIZE = int(os.environ.get("MAX_QUEUE_SIZE", 0))
|
36 |
TIMEOUT = float(os.environ.get("TIMEOUT", 0))
|
37 |
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
|
|
|
38 |
WIDTH = 512
|
39 |
HEIGHT = 512
|
40 |
# disable tiny autoencoder for better quality speed tradeoff
|
@@ -100,15 +101,20 @@ pipe.unet.to(memory_format=torch.channels_last)
|
|
100 |
if psutil.virtual_memory().total < 64 * 1024**3:
|
101 |
pipe.enable_attention_slicing()
|
102 |
|
103 |
-
if not mps_available and not xpu_available:
|
104 |
-
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
105 |
-
pipe(prompt="warmup", image=[Image.new("RGB", (768, 768))], control_image=[Image.new("RGB", (768, 768))])
|
106 |
-
|
107 |
compel_proc = Compel(
|
108 |
tokenizer=pipe.tokenizer,
|
109 |
text_encoder=pipe.text_encoder,
|
110 |
truncate_long_prompts=False,
|
111 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
user_queue_map = {}
|
113 |
|
114 |
|
|
|
35 |
MAX_QUEUE_SIZE = int(os.environ.get("MAX_QUEUE_SIZE", 0))
|
36 |
TIMEOUT = float(os.environ.get("TIMEOUT", 0))
|
37 |
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
|
38 |
+
TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None)
|
39 |
WIDTH = 512
|
40 |
HEIGHT = 512
|
41 |
# disable tiny autoencoder for better quality speed tradeoff
|
|
|
101 |
if psutil.virtual_memory().total < 64 * 1024**3:
|
102 |
pipe.enable_attention_slicing()
|
103 |
|
|
|
|
|
|
|
|
|
104 |
compel_proc = Compel(
|
105 |
tokenizer=pipe.tokenizer,
|
106 |
text_encoder=pipe.text_encoder,
|
107 |
truncate_long_prompts=False,
|
108 |
)
|
109 |
+
if TORCH_COMPILE:
|
110 |
+
pipe.text_encoder = torch.compile(pipe.text_encoder, mode="max-autotune", fullgraph=False)
|
111 |
+
pipe.tokenizer = torch.compile(pipe.tokenizer, mode="max-autotune", fullgraph=False)
|
112 |
+
pipe.unet = torch.compile(pipe.unet, mode="max-autotune", fullgraph=False)
|
113 |
+
pipe.vae = torch.compile(pipe.vae, mode="max-autotune", fullgraph=False)
|
114 |
+
|
115 |
+
pipe(prompt="warmup", image=[Image.new("RGB", (768, 768))], control_image=[Image.new("RGB", (768, 768))])
|
116 |
+
|
117 |
+
|
118 |
user_queue_map = {}
|
119 |
|
120 |
|
app-img2img.py
CHANGED
@@ -29,6 +29,8 @@ import psutil
|
|
29 |
MAX_QUEUE_SIZE = int(os.environ.get("MAX_QUEUE_SIZE", 0))
|
30 |
TIMEOUT = float(os.environ.get("TIMEOUT", 0))
|
31 |
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
|
|
|
|
|
32 |
WIDTH = 512
|
33 |
HEIGHT = 512
|
34 |
# disable tiny autoencoder for better quality speed tradeoff
|
@@ -76,8 +78,12 @@ pipe.unet.to(memory_format=torch.channels_last)
|
|
76 |
if psutil.virtual_memory().total < 64 * 1024**3:
|
77 |
pipe.enable_attention_slicing()
|
78 |
|
79 |
-
if
|
80 |
-
pipe.
|
|
|
|
|
|
|
|
|
81 |
pipe(prompt="warmup", image=[Image.new("RGB", (512, 512))])
|
82 |
|
83 |
compel_proc = Compel(
|
|
|
29 |
MAX_QUEUE_SIZE = int(os.environ.get("MAX_QUEUE_SIZE", 0))
|
30 |
TIMEOUT = float(os.environ.get("TIMEOUT", 0))
|
31 |
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
|
32 |
+
TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None)
|
33 |
+
|
34 |
WIDTH = 512
|
35 |
HEIGHT = 512
|
36 |
# disable tiny autoencoder for better quality speed tradeoff
|
|
|
78 |
if psutil.virtual_memory().total < 64 * 1024**3:
|
79 |
pipe.enable_attention_slicing()
|
80 |
|
81 |
+
if TORCH_COMPILE:
|
82 |
+
pipe.text_encoder = torch.compile(pipe.text_encoder, mode="max-autotune", fullgraph=False)
|
83 |
+
pipe.tokenizer = torch.compile(pipe.tokenizer, mode="max-autotune", fullgraph=False)
|
84 |
+
pipe.unet = torch.compile(pipe.unet, mode="max-autotune", fullgraph=False)
|
85 |
+
pipe.vae = torch.compile(pipe.vae, mode="max-autotune", fullgraph=False)
|
86 |
+
|
87 |
pipe(prompt="warmup", image=[Image.new("RGB", (512, 512))])
|
88 |
|
89 |
compel_proc = Compel(
|
app-txt2img.py
CHANGED
@@ -30,6 +30,8 @@ import psutil
|
|
30 |
MAX_QUEUE_SIZE = int(os.environ.get("MAX_QUEUE_SIZE", 0))
|
31 |
TIMEOUT = float(os.environ.get("TIMEOUT", 0))
|
32 |
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
|
|
|
|
|
33 |
WIDTH = 768
|
34 |
HEIGHT = 768
|
35 |
# disable tiny autoencoder for better quality speed tradeoff
|
@@ -76,8 +78,12 @@ pipe.unet.to(memory_format=torch.channels_last)
|
|
76 |
if psutil.virtual_memory().total < 64 * 1024**3:
|
77 |
pipe.enable_attention_slicing()
|
78 |
|
79 |
-
if
|
80 |
-
pipe.
|
|
|
|
|
|
|
|
|
81 |
pipe(prompt="warmup", num_inference_steps=1, guidance_scale=8.0)
|
82 |
|
83 |
compel_proc = Compel(
|
|
|
30 |
MAX_QUEUE_SIZE = int(os.environ.get("MAX_QUEUE_SIZE", 0))
|
31 |
TIMEOUT = float(os.environ.get("TIMEOUT", 0))
|
32 |
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
|
33 |
+
TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None)
|
34 |
+
|
35 |
WIDTH = 768
|
36 |
HEIGHT = 768
|
37 |
# disable tiny autoencoder for better quality speed tradeoff
|
|
|
78 |
if psutil.virtual_memory().total < 64 * 1024**3:
|
79 |
pipe.enable_attention_slicing()
|
80 |
|
81 |
+
if TORCH_COMPILE:
|
82 |
+
pipe.text_encoder = torch.compile(pipe.text_encoder, mode="max-autotune", fullgraph=False)
|
83 |
+
pipe.tokenizer = torch.compile(pipe.tokenizer, mode="max-autotune", fullgraph=False)
|
84 |
+
pipe.unet = torch.compile(pipe.unet, mode="max-autotune", fullgraph=False)
|
85 |
+
pipe.vae = torch.compile(pipe.vae, mode="max-autotune", fullgraph=False)
|
86 |
+
|
87 |
pipe(prompt="warmup", num_inference_steps=1, guidance_scale=8.0)
|
88 |
|
89 |
compel_proc = Compel(
|
requirements.txt
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
diffusers==0.22.
|
2 |
transformers==4.34.1
|
3 |
gradio==3.50.2
|
4 |
--extra-index-url https://download.pytorch.org/whl/cu121
|
|
|
1 |
+
diffusers==0.22.2
|
2 |
transformers==4.34.1
|
3 |
gradio==3.50.2
|
4 |
--extra-index-url https://download.pytorch.org/whl/cu121
|