Spaces:
Running
on
A100
Running
on
A100
use newest diffusers
Browse files- app-img2img.py +15 -13
- app-txt2img.py +13 -11
- img2img/index.html +1 -1
- latent_consistency_img2img.py +0 -934
- latent_consistency_txt2img.py +0 -836
- requirements.txt +1 -1
app-img2img.py
CHANGED
@@ -9,9 +9,10 @@ from fastapi.middleware.cors import CORSMiddleware
|
|
9 |
from fastapi.responses import StreamingResponse, JSONResponse
|
10 |
from fastapi.staticfiles import StaticFiles
|
11 |
|
12 |
-
from diffusers import
|
13 |
from compel import Compel
|
14 |
import torch
|
|
|
15 |
try:
|
16 |
import intel_extension_for_pytorch as ipex
|
17 |
except:
|
@@ -31,12 +32,14 @@ SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
|
|
31 |
WIDTH = 512
|
32 |
HEIGHT = 512
|
33 |
# disable tiny autoencoder for better quality speed tradeoff
|
34 |
-
USE_TINY_AUTOENCODER=True
|
35 |
|
36 |
# check if MPS is available OSX only M1/M2/M3 chips
|
37 |
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
|
38 |
-
xpu_available = hasattr(torch,
|
39 |
-
device = torch.device(
|
|
|
|
|
40 |
torch_device = device
|
41 |
|
42 |
# change to torch.float16 to save GPU memory
|
@@ -53,17 +56,13 @@ if mps_available:
|
|
53 |
torch_dtype = torch.float32
|
54 |
|
55 |
if SAFETY_CHECKER == "True":
|
56 |
-
pipe =
|
57 |
"SimianLuo/LCM_Dreamshaper_v7",
|
58 |
-
custom_pipeline="latent_consistency_img2img.py",
|
59 |
-
custom_revision="main",
|
60 |
)
|
61 |
else:
|
62 |
-
pipe =
|
63 |
"SimianLuo/LCM_Dreamshaper_v7",
|
64 |
safety_checker=None,
|
65 |
-
custom_pipeline="latent_consistency_img2img.py",
|
66 |
-
custom_revision="main",
|
67 |
)
|
68 |
|
69 |
if USE_TINY_AUTOENCODER:
|
@@ -71,7 +70,7 @@ if USE_TINY_AUTOENCODER:
|
|
71 |
"madebyollin/taesd", torch_dtype=torch_dtype, use_safetensors=True
|
72 |
)
|
73 |
pipe.set_progress_bar_config(disable=True)
|
74 |
-
pipe.to(
|
75 |
pipe.unet.to(memory_format=torch.channels_last)
|
76 |
|
77 |
if psutil.virtual_memory().total < 64 * 1024**3:
|
@@ -98,7 +97,9 @@ class InputParams(BaseModel):
|
|
98 |
height: int = HEIGHT
|
99 |
|
100 |
|
101 |
-
def predict(
|
|
|
|
|
102 |
generator = torch.manual_seed(params.seed)
|
103 |
# Can be set to 1~50 steps. LCM support fast inference even <= 4 steps. Recommend: 1~8 steps.
|
104 |
num_inference_steps = 3
|
@@ -111,7 +112,7 @@ def predict(input_image: Image.Image, params: InputParams, prompt_embeds: torch.
|
|
111 |
guidance_scale=params.guidance_scale,
|
112 |
width=params.width,
|
113 |
height=params.height,
|
114 |
-
|
115 |
output_type="pil",
|
116 |
)
|
117 |
nsfw_content_detected = (
|
@@ -181,6 +182,7 @@ async def stream(user_id: uuid.UUID):
|
|
181 |
try:
|
182 |
user_queue = user_queue_map[uid]
|
183 |
queue = user_queue["queue"]
|
|
|
184 |
async def generate():
|
185 |
last_prompt: str = None
|
186 |
prompt_embeds: torch.Tensor = None
|
|
|
9 |
from fastapi.responses import StreamingResponse, JSONResponse
|
10 |
from fastapi.staticfiles import StaticFiles
|
11 |
|
12 |
+
from diffusers import AutoPipelineForImage2Image, AutoencoderTiny
|
13 |
from compel import Compel
|
14 |
import torch
|
15 |
+
|
16 |
try:
|
17 |
import intel_extension_for_pytorch as ipex
|
18 |
except:
|
|
|
32 |
WIDTH = 512
|
33 |
HEIGHT = 512
|
34 |
# disable tiny autoencoder for better quality speed tradeoff
|
35 |
+
USE_TINY_AUTOENCODER = True
|
36 |
|
37 |
# check if MPS is available OSX only M1/M2/M3 chips
|
38 |
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
|
39 |
+
xpu_available = hasattr(torch, "xpu") and torch.xpu.is_available()
|
40 |
+
device = torch.device(
|
41 |
+
"cuda" if torch.cuda.is_available() else "xpu" if xpu_available else "cpu"
|
42 |
+
)
|
43 |
torch_device = device
|
44 |
|
45 |
# change to torch.float16 to save GPU memory
|
|
|
56 |
torch_dtype = torch.float32
|
57 |
|
58 |
if SAFETY_CHECKER == "True":
|
59 |
+
pipe = AutoPipelineForImage2Image.from_pretrained(
|
60 |
"SimianLuo/LCM_Dreamshaper_v7",
|
|
|
|
|
61 |
)
|
62 |
else:
|
63 |
+
pipe = AutoPipelineForImage2Image.from_pretrained(
|
64 |
"SimianLuo/LCM_Dreamshaper_v7",
|
65 |
safety_checker=None,
|
|
|
|
|
66 |
)
|
67 |
|
68 |
if USE_TINY_AUTOENCODER:
|
|
|
70 |
"madebyollin/taesd", torch_dtype=torch_dtype, use_safetensors=True
|
71 |
)
|
72 |
pipe.set_progress_bar_config(disable=True)
|
73 |
+
pipe.to(device=torch_device, dtype=torch_dtype).to(device)
|
74 |
pipe.unet.to(memory_format=torch.channels_last)
|
75 |
|
76 |
if psutil.virtual_memory().total < 64 * 1024**3:
|
|
|
97 |
height: int = HEIGHT
|
98 |
|
99 |
|
100 |
+
def predict(
|
101 |
+
input_image: Image.Image, params: InputParams, prompt_embeds: torch.Tensor = None
|
102 |
+
):
|
103 |
generator = torch.manual_seed(params.seed)
|
104 |
# Can be set to 1~50 steps. LCM support fast inference even <= 4 steps. Recommend: 1~8 steps.
|
105 |
num_inference_steps = 3
|
|
|
112 |
guidance_scale=params.guidance_scale,
|
113 |
width=params.width,
|
114 |
height=params.height,
|
115 |
+
original_inference_steps=50,
|
116 |
output_type="pil",
|
117 |
)
|
118 |
nsfw_content_detected = (
|
|
|
182 |
try:
|
183 |
user_queue = user_queue_map[uid]
|
184 |
queue = user_queue["queue"]
|
185 |
+
|
186 |
async def generate():
|
187 |
last_prompt: str = None
|
188 |
prompt_embeds: torch.Tensor = None
|
app-txt2img.py
CHANGED
@@ -12,6 +12,7 @@ from fastapi.staticfiles import StaticFiles
|
|
12 |
from diffusers import DiffusionPipeline, AutoencoderTiny
|
13 |
from compel import Compel
|
14 |
import torch
|
|
|
15 |
try:
|
16 |
import intel_extension_for_pytorch as ipex
|
17 |
except:
|
@@ -29,15 +30,17 @@ import psutil
|
|
29 |
MAX_QUEUE_SIZE = int(os.environ.get("MAX_QUEUE_SIZE", 0))
|
30 |
TIMEOUT = float(os.environ.get("TIMEOUT", 0))
|
31 |
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
|
32 |
-
WIDTH =
|
33 |
-
HEIGHT =
|
34 |
# disable tiny autoencoder for better quality speed tradeoff
|
35 |
-
USE_TINY_AUTOENCODER=
|
36 |
|
37 |
# check if MPS is available OSX only M1/M2/M3 chips
|
38 |
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
|
39 |
-
xpu_available = hasattr(torch,
|
40 |
-
device = torch.device(
|
|
|
|
|
41 |
torch_device = device
|
42 |
# change to torch.float16 to save GPU memory
|
43 |
torch_dtype = torch.float32
|
@@ -55,22 +58,18 @@ if mps_available:
|
|
55 |
if SAFETY_CHECKER == "True":
|
56 |
pipe = DiffusionPipeline.from_pretrained(
|
57 |
"SimianLuo/LCM_Dreamshaper_v7",
|
58 |
-
custom_pipeline="latent_consistency_txt2img.py",
|
59 |
-
custom_revision="main",
|
60 |
)
|
61 |
else:
|
62 |
pipe = DiffusionPipeline.from_pretrained(
|
63 |
"SimianLuo/LCM_Dreamshaper_v7",
|
64 |
safety_checker=None,
|
65 |
-
custom_pipeline="latent_consistency_txt2img.py",
|
66 |
-
custom_revision="main",
|
67 |
)
|
68 |
if USE_TINY_AUTOENCODER:
|
69 |
pipe.vae = AutoencoderTiny.from_pretrained(
|
70 |
"madebyollin/taesd", torch_dtype=torch_dtype, use_safetensors=True
|
71 |
)
|
72 |
pipe.set_progress_bar_config(disable=True)
|
73 |
-
pipe.to(
|
74 |
pipe.unet.to(memory_format=torch.channels_last)
|
75 |
|
76 |
# check if computer has less than 64GB of RAM using sys or os
|
@@ -88,6 +87,7 @@ compel_proc = Compel(
|
|
88 |
)
|
89 |
user_queue_map = {}
|
90 |
|
|
|
91 |
class InputParams(BaseModel):
|
92 |
prompt: str
|
93 |
seed: int = 2159232
|
@@ -95,6 +95,7 @@ class InputParams(BaseModel):
|
|
95 |
width: int = WIDTH
|
96 |
height: int = HEIGHT
|
97 |
|
|
|
98 |
def predict(params: InputParams):
|
99 |
generator = torch.manual_seed(params.seed)
|
100 |
prompt_embeds = compel_proc(params.prompt)
|
@@ -107,7 +108,7 @@ def predict(params: InputParams):
|
|
107 |
guidance_scale=params.guidance_scale,
|
108 |
width=params.width,
|
109 |
height=params.height,
|
110 |
-
|
111 |
output_type="pil",
|
112 |
)
|
113 |
nsfw_content_detected = (
|
@@ -129,6 +130,7 @@ app.add_middleware(
|
|
129 |
allow_headers=["*"],
|
130 |
)
|
131 |
|
|
|
132 |
@app.websocket("/ws")
|
133 |
async def websocket_endpoint(websocket: WebSocket):
|
134 |
await websocket.accept()
|
|
|
12 |
from diffusers import DiffusionPipeline, AutoencoderTiny
|
13 |
from compel import Compel
|
14 |
import torch
|
15 |
+
|
16 |
try:
|
17 |
import intel_extension_for_pytorch as ipex
|
18 |
except:
|
|
|
30 |
MAX_QUEUE_SIZE = int(os.environ.get("MAX_QUEUE_SIZE", 0))
|
31 |
TIMEOUT = float(os.environ.get("TIMEOUT", 0))
|
32 |
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
|
33 |
+
WIDTH = 768
|
34 |
+
HEIGHT = 768
|
35 |
# disable tiny autoencoder for better quality speed tradeoff
|
36 |
+
USE_TINY_AUTOENCODER = False
|
37 |
|
38 |
# check if MPS is available OSX only M1/M2/M3 chips
|
39 |
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
|
40 |
+
xpu_available = hasattr(torch, "xpu") and torch.xpu.is_available()
|
41 |
+
device = torch.device(
|
42 |
+
"cuda" if torch.cuda.is_available() else "xpu" if xpu_available else "cpu"
|
43 |
+
)
|
44 |
torch_device = device
|
45 |
# change to torch.float16 to save GPU memory
|
46 |
torch_dtype = torch.float32
|
|
|
58 |
if SAFETY_CHECKER == "True":
|
59 |
pipe = DiffusionPipeline.from_pretrained(
|
60 |
"SimianLuo/LCM_Dreamshaper_v7",
|
|
|
|
|
61 |
)
|
62 |
else:
|
63 |
pipe = DiffusionPipeline.from_pretrained(
|
64 |
"SimianLuo/LCM_Dreamshaper_v7",
|
65 |
safety_checker=None,
|
|
|
|
|
66 |
)
|
67 |
if USE_TINY_AUTOENCODER:
|
68 |
pipe.vae = AutoencoderTiny.from_pretrained(
|
69 |
"madebyollin/taesd", torch_dtype=torch_dtype, use_safetensors=True
|
70 |
)
|
71 |
pipe.set_progress_bar_config(disable=True)
|
72 |
+
pipe.to(device=torch_device, dtype=torch_dtype).to(device)
|
73 |
pipe.unet.to(memory_format=torch.channels_last)
|
74 |
|
75 |
# check if computer has less than 64GB of RAM using sys or os
|
|
|
87 |
)
|
88 |
user_queue_map = {}
|
89 |
|
90 |
+
|
91 |
class InputParams(BaseModel):
|
92 |
prompt: str
|
93 |
seed: int = 2159232
|
|
|
95 |
width: int = WIDTH
|
96 |
height: int = HEIGHT
|
97 |
|
98 |
+
|
99 |
def predict(params: InputParams):
|
100 |
generator = torch.manual_seed(params.seed)
|
101 |
prompt_embeds = compel_proc(params.prompt)
|
|
|
108 |
guidance_scale=params.guidance_scale,
|
109 |
width=params.width,
|
110 |
height=params.height,
|
111 |
+
original_inference_steps=50,
|
112 |
output_type="pil",
|
113 |
)
|
114 |
nsfw_content_detected = (
|
|
|
130 |
allow_headers=["*"],
|
131 |
)
|
132 |
|
133 |
+
|
134 |
@app.websocket("/ws")
|
135 |
async def websocket_endpoint(websocket: WebSocket):
|
136 |
await websocket.accept()
|
img2img/index.html
CHANGED
@@ -257,7 +257,7 @@
|
|
257 |
<output class="text-xs w-[50px] text-center font-light px-1 py-1 border border-gray-700 rounded-md">
|
258 |
8.0</output>
|
259 |
<label class="text-sm font-medium" for="strength">Strength</label>
|
260 |
-
<input type="range" id="strength" name="strength" min="0.
|
261 |
oninput="this.nextElementSibling.value = Number(this.value).toFixed(2)">
|
262 |
<output class="text-xs w-[50px] text-center font-light px-1 py-1 border border-gray-700 rounded-md">
|
263 |
0.5</output>
|
|
|
257 |
<output class="text-xs w-[50px] text-center font-light px-1 py-1 border border-gray-700 rounded-md">
|
258 |
8.0</output>
|
259 |
<label class="text-sm font-medium" for="strength">Strength</label>
|
260 |
+
<input type="range" id="strength" name="strength" min="0.02" max="1" step="0.001" value="0.50"
|
261 |
oninput="this.nextElementSibling.value = Number(this.value).toFixed(2)">
|
262 |
<output class="text-xs w-[50px] text-center font-light px-1 py-1 border border-gray-700 rounded-md">
|
263 |
0.5</output>
|
latent_consistency_img2img.py
DELETED
@@ -1,934 +0,0 @@
|
|
1 |
-
# Copyright 2023 Stanford University Team and The HuggingFace Team. All rights reserved.
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
|
15 |
-
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion
|
16 |
-
# and https://github.com/hojonathanho/diffusion
|
17 |
-
|
18 |
-
import math
|
19 |
-
from dataclasses import dataclass
|
20 |
-
from typing import Any, Dict, List, Optional, Tuple, Union
|
21 |
-
|
22 |
-
import numpy as np
|
23 |
-
import PIL.Image
|
24 |
-
import torch
|
25 |
-
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
|
26 |
-
|
27 |
-
from diffusers import (
|
28 |
-
AutoencoderTiny,
|
29 |
-
AutoencoderKL,
|
30 |
-
ConfigMixin,
|
31 |
-
DiffusionPipeline,
|
32 |
-
SchedulerMixin,
|
33 |
-
UNet2DConditionModel,
|
34 |
-
logging,
|
35 |
-
)
|
36 |
-
from diffusers.configuration_utils import register_to_config
|
37 |
-
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
38 |
-
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
39 |
-
from diffusers.pipelines.stable_diffusion.safety_checker import (
|
40 |
-
StableDiffusionSafetyChecker,
|
41 |
-
)
|
42 |
-
from diffusers.utils import BaseOutput
|
43 |
-
from diffusers.utils.torch_utils import randn_tensor
|
44 |
-
|
45 |
-
|
46 |
-
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
47 |
-
|
48 |
-
|
49 |
-
class LatentConsistencyModelImg2ImgPipeline(DiffusionPipeline):
|
50 |
-
_optional_components = ["scheduler"]
|
51 |
-
|
52 |
-
def __init__(
|
53 |
-
self,
|
54 |
-
vae: AutoencoderKL,
|
55 |
-
text_encoder: CLIPTextModel,
|
56 |
-
tokenizer: CLIPTokenizer,
|
57 |
-
unet: UNet2DConditionModel,
|
58 |
-
scheduler: "LCMSchedulerWithTimestamp",
|
59 |
-
safety_checker: StableDiffusionSafetyChecker,
|
60 |
-
feature_extractor: CLIPImageProcessor,
|
61 |
-
requires_safety_checker: bool = True,
|
62 |
-
):
|
63 |
-
super().__init__()
|
64 |
-
|
65 |
-
scheduler = (
|
66 |
-
scheduler
|
67 |
-
if scheduler is not None
|
68 |
-
else LCMSchedulerWithTimestamp(
|
69 |
-
beta_start=0.00085,
|
70 |
-
beta_end=0.0120,
|
71 |
-
beta_schedule="scaled_linear",
|
72 |
-
prediction_type="epsilon",
|
73 |
-
)
|
74 |
-
)
|
75 |
-
|
76 |
-
self.register_modules(
|
77 |
-
vae=vae,
|
78 |
-
text_encoder=text_encoder,
|
79 |
-
tokenizer=tokenizer,
|
80 |
-
unet=unet,
|
81 |
-
scheduler=scheduler,
|
82 |
-
safety_checker=safety_checker,
|
83 |
-
feature_extractor=feature_extractor,
|
84 |
-
)
|
85 |
-
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
86 |
-
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
87 |
-
|
88 |
-
def _encode_prompt(
|
89 |
-
self,
|
90 |
-
prompt,
|
91 |
-
device,
|
92 |
-
num_images_per_prompt,
|
93 |
-
prompt_embeds: None,
|
94 |
-
):
|
95 |
-
r"""
|
96 |
-
Encodes the prompt into text encoder hidden states.
|
97 |
-
Args:
|
98 |
-
prompt (`str` or `List[str]`, *optional*):
|
99 |
-
prompt to be encoded
|
100 |
-
device: (`torch.device`):
|
101 |
-
torch device
|
102 |
-
num_images_per_prompt (`int`):
|
103 |
-
number of images that should be generated per prompt
|
104 |
-
prompt_embeds (`torch.FloatTensor`, *optional*):
|
105 |
-
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
106 |
-
provided, text embeddings will be generated from `prompt` input argument.
|
107 |
-
"""
|
108 |
-
|
109 |
-
if prompt is not None and isinstance(prompt, str):
|
110 |
-
pass
|
111 |
-
elif prompt is not None and isinstance(prompt, list):
|
112 |
-
len(prompt)
|
113 |
-
else:
|
114 |
-
prompt_embeds.shape[0]
|
115 |
-
|
116 |
-
if prompt_embeds is None:
|
117 |
-
text_inputs = self.tokenizer(
|
118 |
-
prompt,
|
119 |
-
padding="max_length",
|
120 |
-
max_length=self.tokenizer.model_max_length,
|
121 |
-
truncation=True,
|
122 |
-
return_tensors="pt",
|
123 |
-
)
|
124 |
-
text_input_ids = text_inputs.input_ids
|
125 |
-
untruncated_ids = self.tokenizer(
|
126 |
-
prompt, padding="longest", return_tensors="pt"
|
127 |
-
).input_ids
|
128 |
-
|
129 |
-
if untruncated_ids.shape[-1] >= text_input_ids.shape[
|
130 |
-
-1
|
131 |
-
] and not torch.equal(text_input_ids, untruncated_ids):
|
132 |
-
removed_text = self.tokenizer.batch_decode(
|
133 |
-
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
134 |
-
)
|
135 |
-
logger.warning(
|
136 |
-
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
137 |
-
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
138 |
-
)
|
139 |
-
|
140 |
-
if (
|
141 |
-
hasattr(self.text_encoder.config, "use_attention_mask")
|
142 |
-
and self.text_encoder.config.use_attention_mask
|
143 |
-
):
|
144 |
-
attention_mask = text_inputs.attention_mask.to(device)
|
145 |
-
else:
|
146 |
-
attention_mask = None
|
147 |
-
|
148 |
-
prompt_embeds = self.text_encoder(
|
149 |
-
text_input_ids.to(device),
|
150 |
-
attention_mask=attention_mask,
|
151 |
-
)
|
152 |
-
prompt_embeds = prompt_embeds[0]
|
153 |
-
|
154 |
-
if self.text_encoder is not None:
|
155 |
-
prompt_embeds_dtype = self.text_encoder.dtype
|
156 |
-
elif self.unet is not None:
|
157 |
-
prompt_embeds_dtype = self.unet.dtype
|
158 |
-
else:
|
159 |
-
prompt_embeds_dtype = prompt_embeds.dtype
|
160 |
-
|
161 |
-
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
162 |
-
|
163 |
-
bs_embed, seq_len, _ = prompt_embeds.shape
|
164 |
-
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
165 |
-
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
166 |
-
prompt_embeds = prompt_embeds.view(
|
167 |
-
bs_embed * num_images_per_prompt, seq_len, -1
|
168 |
-
)
|
169 |
-
|
170 |
-
# Don't need to get uncond prompt embedding because of LCM Guided Distillation
|
171 |
-
return prompt_embeds
|
172 |
-
|
173 |
-
def run_safety_checker(self, image, device, dtype):
|
174 |
-
if self.safety_checker is None:
|
175 |
-
has_nsfw_concept = None
|
176 |
-
else:
|
177 |
-
if torch.is_tensor(image):
|
178 |
-
feature_extractor_input = self.image_processor.postprocess(
|
179 |
-
image, output_type="pil"
|
180 |
-
)
|
181 |
-
else:
|
182 |
-
feature_extractor_input = self.image_processor.numpy_to_pil(image)
|
183 |
-
safety_checker_input = self.feature_extractor(
|
184 |
-
feature_extractor_input, return_tensors="pt"
|
185 |
-
).to(device)
|
186 |
-
image, has_nsfw_concept = self.safety_checker(
|
187 |
-
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
|
188 |
-
)
|
189 |
-
return image, has_nsfw_concept
|
190 |
-
|
191 |
-
def prepare_latents(
|
192 |
-
self,
|
193 |
-
image,
|
194 |
-
timestep,
|
195 |
-
batch_size,
|
196 |
-
num_channels_latents,
|
197 |
-
height,
|
198 |
-
width,
|
199 |
-
dtype,
|
200 |
-
device,
|
201 |
-
latents=None,
|
202 |
-
generator=None,
|
203 |
-
):
|
204 |
-
shape = (
|
205 |
-
batch_size,
|
206 |
-
num_channels_latents,
|
207 |
-
height // self.vae_scale_factor,
|
208 |
-
width // self.vae_scale_factor,
|
209 |
-
)
|
210 |
-
|
211 |
-
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
|
212 |
-
raise ValueError(
|
213 |
-
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
|
214 |
-
)
|
215 |
-
|
216 |
-
image = image.to(device=device, dtype=dtype)
|
217 |
-
|
218 |
-
# batch_size = batch_size * num_images_per_prompt
|
219 |
-
if image.shape[1] == 4:
|
220 |
-
init_latents = image
|
221 |
-
|
222 |
-
else:
|
223 |
-
if isinstance(generator, list) and len(generator) != batch_size:
|
224 |
-
raise ValueError(
|
225 |
-
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
226 |
-
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
227 |
-
)
|
228 |
-
|
229 |
-
elif isinstance(generator, list):
|
230 |
-
if isinstance(self.vae, AutoencoderTiny):
|
231 |
-
init_latents = [
|
232 |
-
self.vae.encode(image[i : i + 1]).latents
|
233 |
-
for i in range(batch_size)
|
234 |
-
]
|
235 |
-
else:
|
236 |
-
init_latents = [
|
237 |
-
self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i])
|
238 |
-
for i in range(batch_size)
|
239 |
-
]
|
240 |
-
init_latents = torch.cat(init_latents, dim=0)
|
241 |
-
else:
|
242 |
-
if isinstance(self.vae, AutoencoderTiny):
|
243 |
-
init_latents = self.vae.encode(image).latents
|
244 |
-
else:
|
245 |
-
init_latents = self.vae.encode(image).latent_dist.sample(generator)
|
246 |
-
|
247 |
-
init_latents = self.vae.config.scaling_factor * init_latents
|
248 |
-
|
249 |
-
if (
|
250 |
-
batch_size > init_latents.shape[0]
|
251 |
-
and batch_size % init_latents.shape[0] == 0
|
252 |
-
):
|
253 |
-
# expand init_latents for batch_size
|
254 |
-
(
|
255 |
-
f"You have passed {batch_size} text prompts (`prompt`), but only {init_latents.shape[0]} initial"
|
256 |
-
" images (`image`). Initial images are now duplicating to match the number of text prompts. Note"
|
257 |
-
" that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update"
|
258 |
-
" your script to pass as many initial images as text prompts to suppress this warning."
|
259 |
-
)
|
260 |
-
# deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False)
|
261 |
-
additional_image_per_prompt = batch_size // init_latents.shape[0]
|
262 |
-
init_latents = torch.cat(
|
263 |
-
[init_latents] * additional_image_per_prompt, dim=0
|
264 |
-
)
|
265 |
-
elif (
|
266 |
-
batch_size > init_latents.shape[0]
|
267 |
-
and batch_size % init_latents.shape[0] != 0
|
268 |
-
):
|
269 |
-
raise ValueError(
|
270 |
-
f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
|
271 |
-
)
|
272 |
-
else:
|
273 |
-
init_latents = torch.cat([init_latents], dim=0)
|
274 |
-
|
275 |
-
shape = init_latents.shape
|
276 |
-
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
277 |
-
|
278 |
-
# get latents
|
279 |
-
init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
|
280 |
-
latents = init_latents
|
281 |
-
|
282 |
-
if latents is None:
|
283 |
-
latents = torch.randn(shape, dtype=dtype).to(device)
|
284 |
-
else:
|
285 |
-
latents = latents.to(device)
|
286 |
-
# scale the initial noise by the standard deviation required by the scheduler
|
287 |
-
latents = latents * self.scheduler.init_noise_sigma
|
288 |
-
return latents
|
289 |
-
|
290 |
-
def get_w_embedding(self, w, embedding_dim=512, dtype=torch.float32):
|
291 |
-
"""
|
292 |
-
see https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
293 |
-
Args:
|
294 |
-
timesteps: torch.Tensor: generate embedding vectors at these timesteps
|
295 |
-
embedding_dim: int: dimension of the embeddings to generate
|
296 |
-
dtype: data type of the generated embeddings
|
297 |
-
Returns:
|
298 |
-
embedding vectors with shape `(len(timesteps), embedding_dim)`
|
299 |
-
"""
|
300 |
-
assert len(w.shape) == 1
|
301 |
-
w = w * 1000.0
|
302 |
-
|
303 |
-
half_dim = embedding_dim // 2
|
304 |
-
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
|
305 |
-
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
|
306 |
-
emb = w.to(dtype)[:, None] * emb[None, :]
|
307 |
-
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
308 |
-
if embedding_dim % 2 == 1: # zero pad
|
309 |
-
emb = torch.nn.functional.pad(emb, (0, 1))
|
310 |
-
assert emb.shape == (w.shape[0], embedding_dim)
|
311 |
-
return emb
|
312 |
-
|
313 |
-
def get_timesteps(self, num_inference_steps, strength, device):
|
314 |
-
# get the original timestep using init_timestep
|
315 |
-
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
316 |
-
|
317 |
-
t_start = max(num_inference_steps - init_timestep, 0)
|
318 |
-
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
|
319 |
-
|
320 |
-
return timesteps, num_inference_steps - t_start
|
321 |
-
|
322 |
-
@torch.no_grad()
|
323 |
-
def __call__(
|
324 |
-
self,
|
325 |
-
prompt: Union[str, List[str]] = None,
|
326 |
-
image: PipelineImageInput = None,
|
327 |
-
strength: float = 0.8,
|
328 |
-
height: Optional[int] = 768,
|
329 |
-
width: Optional[int] = 768,
|
330 |
-
guidance_scale: float = 7.5,
|
331 |
-
num_images_per_prompt: Optional[int] = 1,
|
332 |
-
latents: Optional[torch.FloatTensor] = None,
|
333 |
-
generator: Optional[torch.Generator] = None,
|
334 |
-
num_inference_steps: int = 4,
|
335 |
-
lcm_origin_steps: int = 50,
|
336 |
-
prompt_embeds: Optional[torch.FloatTensor] = None,
|
337 |
-
output_type: Optional[str] = "pil",
|
338 |
-
return_dict: bool = True,
|
339 |
-
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
340 |
-
):
|
341 |
-
# 0. Default height and width to unet
|
342 |
-
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
343 |
-
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
344 |
-
|
345 |
-
# 2. Define call parameters
|
346 |
-
if prompt is not None and isinstance(prompt, str):
|
347 |
-
batch_size = 1
|
348 |
-
elif prompt is not None and isinstance(prompt, list):
|
349 |
-
batch_size = len(prompt)
|
350 |
-
else:
|
351 |
-
batch_size = prompt_embeds.shape[0]
|
352 |
-
|
353 |
-
device = self._execution_device
|
354 |
-
# do_classifier_free_guidance = guidance_scale > 0.0 # In LCM Implementation: cfg_noise = noise_cond + cfg_scale * (noise_cond - noise_uncond) , (cfg_scale > 0.0 using CFG)
|
355 |
-
|
356 |
-
# 3. Encode input prompt
|
357 |
-
prompt_embeds = self._encode_prompt(
|
358 |
-
prompt,
|
359 |
-
device,
|
360 |
-
num_images_per_prompt,
|
361 |
-
prompt_embeds=prompt_embeds,
|
362 |
-
)
|
363 |
-
|
364 |
-
# 3.5 encode image
|
365 |
-
image = self.image_processor.preprocess(image)
|
366 |
-
|
367 |
-
# 4. Prepare timesteps
|
368 |
-
self.scheduler.set_timesteps(strength, num_inference_steps, lcm_origin_steps)
|
369 |
-
# timesteps = self.scheduler.timesteps
|
370 |
-
# timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, 1.0, device)
|
371 |
-
timesteps = self.scheduler.timesteps
|
372 |
-
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
373 |
-
|
374 |
-
print("timesteps: ", timesteps)
|
375 |
-
|
376 |
-
# 5. Prepare latent variable
|
377 |
-
num_channels_latents = self.unet.config.in_channels
|
378 |
-
latents = self.prepare_latents(
|
379 |
-
image,
|
380 |
-
latent_timestep,
|
381 |
-
batch_size * num_images_per_prompt,
|
382 |
-
num_channels_latents,
|
383 |
-
height,
|
384 |
-
width,
|
385 |
-
prompt_embeds.dtype,
|
386 |
-
device,
|
387 |
-
latents,
|
388 |
-
generator
|
389 |
-
)
|
390 |
-
bs = batch_size * num_images_per_prompt
|
391 |
-
|
392 |
-
# 6. Get Guidance Scale Embedding
|
393 |
-
w = torch.tensor(guidance_scale).repeat(bs)
|
394 |
-
w_embedding = self.get_w_embedding(w, embedding_dim=256).to(
|
395 |
-
device=device, dtype=latents.dtype
|
396 |
-
)
|
397 |
-
|
398 |
-
# 7. LCM MultiStep Sampling Loop:
|
399 |
-
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
400 |
-
for i, t in enumerate(timesteps):
|
401 |
-
ts = torch.full((bs,), t, device=device, dtype=torch.long)
|
402 |
-
latents = latents.to(prompt_embeds.dtype)
|
403 |
-
|
404 |
-
# model prediction (v-prediction, eps, x)
|
405 |
-
model_pred = self.unet(
|
406 |
-
latents,
|
407 |
-
ts,
|
408 |
-
timestep_cond=w_embedding,
|
409 |
-
encoder_hidden_states=prompt_embeds,
|
410 |
-
cross_attention_kwargs=cross_attention_kwargs,
|
411 |
-
return_dict=False,
|
412 |
-
)[0]
|
413 |
-
|
414 |
-
# compute the previous noisy sample x_t -> x_t-1
|
415 |
-
latents, denoised = self.scheduler.step(
|
416 |
-
model_pred, i, t, latents, return_dict=False
|
417 |
-
)
|
418 |
-
|
419 |
-
# # call the callback, if provided
|
420 |
-
# if i == len(timesteps) - 1:
|
421 |
-
progress_bar.update()
|
422 |
-
|
423 |
-
denoised = denoised.to(prompt_embeds.dtype)
|
424 |
-
if not output_type == "latent":
|
425 |
-
image = self.vae.decode(
|
426 |
-
denoised / self.vae.config.scaling_factor, return_dict=False
|
427 |
-
)[0]
|
428 |
-
image, has_nsfw_concept = self.run_safety_checker(
|
429 |
-
image, device, prompt_embeds.dtype
|
430 |
-
)
|
431 |
-
else:
|
432 |
-
image = denoised
|
433 |
-
has_nsfw_concept = None
|
434 |
-
|
435 |
-
if has_nsfw_concept is None:
|
436 |
-
do_denormalize = [True] * image.shape[0]
|
437 |
-
else:
|
438 |
-
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
439 |
-
|
440 |
-
image = self.image_processor.postprocess(
|
441 |
-
image, output_type=output_type, do_denormalize=do_denormalize
|
442 |
-
)
|
443 |
-
|
444 |
-
if not return_dict:
|
445 |
-
return (image, has_nsfw_concept)
|
446 |
-
|
447 |
-
return StableDiffusionPipelineOutput(
|
448 |
-
images=image, nsfw_content_detected=has_nsfw_concept
|
449 |
-
)
|
450 |
-
|
451 |
-
|
452 |
-
@dataclass
|
453 |
-
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM
|
454 |
-
class LCMSchedulerOutput(BaseOutput):
|
455 |
-
"""
|
456 |
-
Output class for the scheduler's `step` function output.
|
457 |
-
Args:
|
458 |
-
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
|
459 |
-
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
|
460 |
-
denoising loop.
|
461 |
-
pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
|
462 |
-
The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
|
463 |
-
`pred_original_sample` can be used to preview progress or for guidance.
|
464 |
-
"""
|
465 |
-
|
466 |
-
prev_sample: torch.FloatTensor
|
467 |
-
denoised: Optional[torch.FloatTensor] = None
|
468 |
-
|
469 |
-
|
470 |
-
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
|
471 |
-
def betas_for_alpha_bar(
|
472 |
-
num_diffusion_timesteps,
|
473 |
-
max_beta=0.999,
|
474 |
-
alpha_transform_type="cosine",
|
475 |
-
):
|
476 |
-
"""
|
477 |
-
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
478 |
-
(1-beta) over time from t = [0,1].
|
479 |
-
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
|
480 |
-
to that part of the diffusion process.
|
481 |
-
Args:
|
482 |
-
num_diffusion_timesteps (`int`): the number of betas to produce.
|
483 |
-
max_beta (`float`): the maximum beta to use; use values lower than 1 to
|
484 |
-
prevent singularities.
|
485 |
-
alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
|
486 |
-
Choose from `cosine` or `exp`
|
487 |
-
Returns:
|
488 |
-
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
|
489 |
-
"""
|
490 |
-
if alpha_transform_type == "cosine":
|
491 |
-
|
492 |
-
def alpha_bar_fn(t):
|
493 |
-
return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2
|
494 |
-
|
495 |
-
elif alpha_transform_type == "exp":
|
496 |
-
|
497 |
-
def alpha_bar_fn(t):
|
498 |
-
return math.exp(t * -12.0)
|
499 |
-
|
500 |
-
else:
|
501 |
-
raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}")
|
502 |
-
|
503 |
-
betas = []
|
504 |
-
for i in range(num_diffusion_timesteps):
|
505 |
-
t1 = i / num_diffusion_timesteps
|
506 |
-
t2 = (i + 1) / num_diffusion_timesteps
|
507 |
-
betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
|
508 |
-
return torch.tensor(betas, dtype=torch.float32)
|
509 |
-
|
510 |
-
|
511 |
-
def rescale_zero_terminal_snr(betas):
|
512 |
-
"""
|
513 |
-
Rescales betas to have zero terminal SNR Based on https://arxiv.org/pdf/2305.08891.pdf (Algorithm 1)
|
514 |
-
Args:
|
515 |
-
betas (`torch.FloatTensor`):
|
516 |
-
the betas that the scheduler is being initialized with.
|
517 |
-
Returns:
|
518 |
-
`torch.FloatTensor`: rescaled betas with zero terminal SNR
|
519 |
-
"""
|
520 |
-
# Convert betas to alphas_bar_sqrt
|
521 |
-
alphas = 1.0 - betas
|
522 |
-
alphas_cumprod = torch.cumprod(alphas, dim=0)
|
523 |
-
alphas_bar_sqrt = alphas_cumprod.sqrt()
|
524 |
-
|
525 |
-
# Store old values.
|
526 |
-
alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
|
527 |
-
alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()
|
528 |
-
|
529 |
-
# Shift so the last timestep is zero.
|
530 |
-
alphas_bar_sqrt -= alphas_bar_sqrt_T
|
531 |
-
|
532 |
-
# Scale so the first timestep is back to the old value.
|
533 |
-
alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)
|
534 |
-
|
535 |
-
# Convert alphas_bar_sqrt to betas
|
536 |
-
alphas_bar = alphas_bar_sqrt**2 # Revert sqrt
|
537 |
-
alphas = alphas_bar[1:] / alphas_bar[:-1] # Revert cumprod
|
538 |
-
alphas = torch.cat([alphas_bar[0:1], alphas])
|
539 |
-
betas = 1 - alphas
|
540 |
-
|
541 |
-
return betas
|
542 |
-
|
543 |
-
|
544 |
-
class LCMSchedulerWithTimestamp(SchedulerMixin, ConfigMixin):
|
545 |
-
"""
|
546 |
-
This class modifies LCMScheduler to add a timestamp argument to set_timesteps
|
547 |
-
|
548 |
-
|
549 |
-
`LCMScheduler` extends the denoising procedure introduced in denoising diffusion probabilistic models (DDPMs) with
|
550 |
-
non-Markovian guidance.
|
551 |
-
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
|
552 |
-
methods the library implements for all schedulers such as loading and saving.
|
553 |
-
Args:
|
554 |
-
num_train_timesteps (`int`, defaults to 1000):
|
555 |
-
The number of diffusion steps to train the model.
|
556 |
-
beta_start (`float`, defaults to 0.0001):
|
557 |
-
The starting `beta` value of inference.
|
558 |
-
beta_end (`float`, defaults to 0.02):
|
559 |
-
The final `beta` value.
|
560 |
-
beta_schedule (`str`, defaults to `"linear"`):
|
561 |
-
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
|
562 |
-
`linear`, `scaled_linear`, or `squaredcos_cap_v2`.
|
563 |
-
trained_betas (`np.ndarray`, *optional*):
|
564 |
-
Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
|
565 |
-
clip_sample (`bool`, defaults to `True`):
|
566 |
-
Clip the predicted sample for numerical stability.
|
567 |
-
clip_sample_range (`float`, defaults to 1.0):
|
568 |
-
The maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
|
569 |
-
set_alpha_to_one (`bool`, defaults to `True`):
|
570 |
-
Each diffusion step uses the alphas product value at that step and at the previous one. For the final step
|
571 |
-
there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`,
|
572 |
-
otherwise it uses the alpha value at step 0.
|
573 |
-
steps_offset (`int`, defaults to 0):
|
574 |
-
An offset added to the inference steps. You can use a combination of `offset=1` and
|
575 |
-
`set_alpha_to_one=False` to make the last step use step 0 for the previous alpha product like in Stable
|
576 |
-
Diffusion.
|
577 |
-
prediction_type (`str`, defaults to `epsilon`, *optional*):
|
578 |
-
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
|
579 |
-
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
|
580 |
-
Video](https://imagen.research.google/video/paper.pdf) paper).
|
581 |
-
thresholding (`bool`, defaults to `False`):
|
582 |
-
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
|
583 |
-
as Stable Diffusion.
|
584 |
-
dynamic_thresholding_ratio (`float`, defaults to 0.995):
|
585 |
-
The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
|
586 |
-
sample_max_value (`float`, defaults to 1.0):
|
587 |
-
The threshold value for dynamic thresholding. Valid only when `thresholding=True`.
|
588 |
-
timestep_spacing (`str`, defaults to `"leading"`):
|
589 |
-
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
|
590 |
-
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
|
591 |
-
rescale_betas_zero_snr (`bool`, defaults to `False`):
|
592 |
-
Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
|
593 |
-
dark samples instead of limiting it to samples with medium brightness. Loosely related to
|
594 |
-
[`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
|
595 |
-
"""
|
596 |
-
|
597 |
-
# _compatibles = [e.name for e in KarrasDiffusionSchedulers]
|
598 |
-
order = 1
|
599 |
-
|
600 |
-
@register_to_config
|
601 |
-
def __init__(
|
602 |
-
self,
|
603 |
-
num_train_timesteps: int = 1000,
|
604 |
-
beta_start: float = 0.0001,
|
605 |
-
beta_end: float = 0.02,
|
606 |
-
beta_schedule: str = "linear",
|
607 |
-
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
|
608 |
-
clip_sample: bool = True,
|
609 |
-
set_alpha_to_one: bool = True,
|
610 |
-
steps_offset: int = 0,
|
611 |
-
prediction_type: str = "epsilon",
|
612 |
-
thresholding: bool = False,
|
613 |
-
dynamic_thresholding_ratio: float = 0.995,
|
614 |
-
clip_sample_range: float = 1.0,
|
615 |
-
sample_max_value: float = 1.0,
|
616 |
-
timestep_spacing: str = "leading",
|
617 |
-
rescale_betas_zero_snr: bool = False,
|
618 |
-
):
|
619 |
-
if trained_betas is not None:
|
620 |
-
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
|
621 |
-
elif beta_schedule == "linear":
|
622 |
-
self.betas = torch.linspace(
|
623 |
-
beta_start, beta_end, num_train_timesteps, dtype=torch.float32
|
624 |
-
)
|
625 |
-
elif beta_schedule == "scaled_linear":
|
626 |
-
# this schedule is very specific to the latent diffusion model.
|
627 |
-
self.betas = (
|
628 |
-
torch.linspace(
|
629 |
-
beta_start**0.5,
|
630 |
-
beta_end**0.5,
|
631 |
-
num_train_timesteps,
|
632 |
-
dtype=torch.float32,
|
633 |
-
)
|
634 |
-
** 2
|
635 |
-
)
|
636 |
-
elif beta_schedule == "squaredcos_cap_v2":
|
637 |
-
# Glide cosine schedule
|
638 |
-
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
639 |
-
else:
|
640 |
-
raise NotImplementedError(
|
641 |
-
f"{beta_schedule} does is not implemented for {self.__class__}"
|
642 |
-
)
|
643 |
-
|
644 |
-
# Rescale for zero SNR
|
645 |
-
if rescale_betas_zero_snr:
|
646 |
-
self.betas = rescale_zero_terminal_snr(self.betas)
|
647 |
-
|
648 |
-
self.alphas = 1.0 - self.betas
|
649 |
-
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
|
650 |
-
|
651 |
-
# At every step in ddim, we are looking into the previous alphas_cumprod
|
652 |
-
# For the final step, there is no previous alphas_cumprod because we are already at 0
|
653 |
-
# `set_alpha_to_one` decides whether we set this parameter simply to one or
|
654 |
-
# whether we use the final alpha of the "non-previous" one.
|
655 |
-
self.final_alpha_cumprod = (
|
656 |
-
torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0]
|
657 |
-
)
|
658 |
-
|
659 |
-
# standard deviation of the initial noise distribution
|
660 |
-
self.init_noise_sigma = 1.0
|
661 |
-
|
662 |
-
# setable values
|
663 |
-
self.num_inference_steps = None
|
664 |
-
self.timesteps = torch.from_numpy(
|
665 |
-
np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64)
|
666 |
-
)
|
667 |
-
|
668 |
-
def scale_model_input(
|
669 |
-
self, sample: torch.FloatTensor, timestep: Optional[int] = None
|
670 |
-
) -> torch.FloatTensor:
|
671 |
-
"""
|
672 |
-
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
|
673 |
-
current timestep.
|
674 |
-
Args:
|
675 |
-
sample (`torch.FloatTensor`):
|
676 |
-
The input sample.
|
677 |
-
timestep (`int`, *optional*):
|
678 |
-
The current timestep in the diffusion chain.
|
679 |
-
Returns:
|
680 |
-
`torch.FloatTensor`:
|
681 |
-
A scaled input sample.
|
682 |
-
"""
|
683 |
-
return sample
|
684 |
-
|
685 |
-
def _get_variance(self, timestep, prev_timestep):
|
686 |
-
alpha_prod_t = self.alphas_cumprod[timestep]
|
687 |
-
alpha_prod_t_prev = (
|
688 |
-
self.alphas_cumprod[prev_timestep]
|
689 |
-
if prev_timestep >= 0
|
690 |
-
else self.final_alpha_cumprod
|
691 |
-
)
|
692 |
-
beta_prod_t = 1 - alpha_prod_t
|
693 |
-
beta_prod_t_prev = 1 - alpha_prod_t_prev
|
694 |
-
|
695 |
-
variance = (beta_prod_t_prev / beta_prod_t) * (
|
696 |
-
1 - alpha_prod_t / alpha_prod_t_prev
|
697 |
-
)
|
698 |
-
|
699 |
-
return variance
|
700 |
-
|
701 |
-
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
|
702 |
-
def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor:
|
703 |
-
"""
|
704 |
-
"Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
|
705 |
-
prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
|
706 |
-
s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
|
707 |
-
pixels from saturation at each step. We find that dynamic thresholding results in significantly better
|
708 |
-
photorealism as well as better image-text alignment, especially when using very large guidance weights."
|
709 |
-
https://arxiv.org/abs/2205.11487
|
710 |
-
"""
|
711 |
-
dtype = sample.dtype
|
712 |
-
batch_size, channels, height, width = sample.shape
|
713 |
-
|
714 |
-
if dtype not in (torch.float32, torch.float64):
|
715 |
-
sample = (
|
716 |
-
sample.float()
|
717 |
-
) # upcast for quantile calculation, and clamp not implemented for cpu half
|
718 |
-
|
719 |
-
# Flatten sample for doing quantile calculation along each image
|
720 |
-
sample = sample.reshape(batch_size, channels * height * width)
|
721 |
-
|
722 |
-
abs_sample = sample.abs() # "a certain percentile absolute pixel value"
|
723 |
-
|
724 |
-
s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
|
725 |
-
s = torch.clamp(
|
726 |
-
s, min=1, max=self.config.sample_max_value
|
727 |
-
) # When clamped to min=1, equivalent to standard clipping to [-1, 1]
|
728 |
-
|
729 |
-
s = s.unsqueeze(1) # (batch_size, 1) because clamp will broadcast along dim=0
|
730 |
-
sample = (
|
731 |
-
torch.clamp(sample, -s, s) / s
|
732 |
-
) # "we threshold xt0 to the range [-s, s] and then divide by s"
|
733 |
-
|
734 |
-
sample = sample.reshape(batch_size, channels, height, width)
|
735 |
-
sample = sample.to(dtype)
|
736 |
-
|
737 |
-
return sample
|
738 |
-
|
739 |
-
def set_timesteps(
|
740 |
-
self,
|
741 |
-
stength,
|
742 |
-
num_inference_steps: int,
|
743 |
-
lcm_origin_steps: int,
|
744 |
-
device: Union[str, torch.device] = None,
|
745 |
-
):
|
746 |
-
"""
|
747 |
-
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
748 |
-
Args:
|
749 |
-
num_inference_steps (`int`):
|
750 |
-
The number of diffusion steps used when generating samples with a pre-trained model.
|
751 |
-
"""
|
752 |
-
|
753 |
-
if num_inference_steps > self.config.num_train_timesteps:
|
754 |
-
raise ValueError(
|
755 |
-
f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
|
756 |
-
f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
|
757 |
-
f" maximal {self.config.num_train_timesteps} timesteps."
|
758 |
-
)
|
759 |
-
|
760 |
-
self.num_inference_steps = num_inference_steps
|
761 |
-
|
762 |
-
# LCM Timesteps Setting: # Linear Spacing
|
763 |
-
c = self.config.num_train_timesteps // lcm_origin_steps
|
764 |
-
lcm_origin_timesteps = (
|
765 |
-
np.asarray(list(range(1, int(lcm_origin_steps * stength) + 1))) * c - 1
|
766 |
-
) # LCM Training Steps Schedule
|
767 |
-
skipping_step = len(lcm_origin_timesteps) // num_inference_steps
|
768 |
-
timesteps = lcm_origin_timesteps[::-skipping_step][
|
769 |
-
:num_inference_steps
|
770 |
-
] # LCM Inference Steps Schedule
|
771 |
-
|
772 |
-
self.timesteps = torch.from_numpy(timesteps.copy()).to(device)
|
773 |
-
|
774 |
-
def get_scalings_for_boundary_condition_discrete(self, t):
|
775 |
-
self.sigma_data = 0.5 # Default: 0.5
|
776 |
-
|
777 |
-
# By dividing 0.1: This is almost a delta function at t=0.
|
778 |
-
c_skip = self.sigma_data**2 / ((t / 0.1) ** 2 + self.sigma_data**2)
|
779 |
-
c_out = (t / 0.1) / ((t / 0.1) ** 2 + self.sigma_data**2) ** 0.5
|
780 |
-
return c_skip, c_out
|
781 |
-
|
782 |
-
def step(
|
783 |
-
self,
|
784 |
-
model_output: torch.FloatTensor,
|
785 |
-
timeindex: int,
|
786 |
-
timestep: int,
|
787 |
-
sample: torch.FloatTensor,
|
788 |
-
eta: float = 0.0,
|
789 |
-
use_clipped_model_output: bool = False,
|
790 |
-
generator=None,
|
791 |
-
variance_noise: Optional[torch.FloatTensor] = None,
|
792 |
-
return_dict: bool = True,
|
793 |
-
) -> Union[LCMSchedulerOutput, Tuple]:
|
794 |
-
"""
|
795 |
-
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
|
796 |
-
process from the learned model outputs (most often the predicted noise).
|
797 |
-
Args:
|
798 |
-
model_output (`torch.FloatTensor`):
|
799 |
-
The direct output from learned diffusion model.
|
800 |
-
timestep (`float`):
|
801 |
-
The current discrete timestep in the diffusion chain.
|
802 |
-
sample (`torch.FloatTensor`):
|
803 |
-
A current instance of a sample created by the diffusion process.
|
804 |
-
eta (`float`):
|
805 |
-
The weight of noise for added noise in diffusion step.
|
806 |
-
use_clipped_model_output (`bool`, defaults to `False`):
|
807 |
-
If `True`, computes "corrected" `model_output` from the clipped predicted original sample. Necessary
|
808 |
-
because predicted original sample is clipped to [-1, 1] when `self.config.clip_sample` is `True`. If no
|
809 |
-
clipping has happened, "corrected" `model_output` would coincide with the one provided as input and
|
810 |
-
`use_clipped_model_output` has no effect.
|
811 |
-
generator (`torch.Generator`, *optional*):
|
812 |
-
A random number generator.
|
813 |
-
variance_noise (`torch.FloatTensor`):
|
814 |
-
Alternative to generating noise with `generator` by directly providing the noise for the variance
|
815 |
-
itself. Useful for methods such as [`CycleDiffusion`].
|
816 |
-
return_dict (`bool`, *optional*, defaults to `True`):
|
817 |
-
Whether or not to return a [`~schedulers.scheduling_lcm.LCMSchedulerOutput`] or `tuple`.
|
818 |
-
Returns:
|
819 |
-
[`~schedulers.scheduling_utils.LCMSchedulerOutput`] or `tuple`:
|
820 |
-
If return_dict is `True`, [`~schedulers.scheduling_lcm.LCMSchedulerOutput`] is returned, otherwise a
|
821 |
-
tuple is returned where the first element is the sample tensor.
|
822 |
-
"""
|
823 |
-
if self.num_inference_steps is None:
|
824 |
-
raise ValueError(
|
825 |
-
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
|
826 |
-
)
|
827 |
-
|
828 |
-
# 1. get previous step value
|
829 |
-
prev_timeindex = timeindex + 1
|
830 |
-
if prev_timeindex < len(self.timesteps):
|
831 |
-
prev_timestep = self.timesteps[prev_timeindex]
|
832 |
-
else:
|
833 |
-
prev_timestep = timestep
|
834 |
-
|
835 |
-
# 2. compute alphas, betas
|
836 |
-
alpha_prod_t = self.alphas_cumprod[timestep]
|
837 |
-
alpha_prod_t_prev = (
|
838 |
-
self.alphas_cumprod[prev_timestep]
|
839 |
-
if prev_timestep >= 0
|
840 |
-
else self.final_alpha_cumprod
|
841 |
-
)
|
842 |
-
|
843 |
-
beta_prod_t = 1 - alpha_prod_t
|
844 |
-
beta_prod_t_prev = 1 - alpha_prod_t_prev
|
845 |
-
|
846 |
-
# 3. Get scalings for boundary conditions
|
847 |
-
c_skip, c_out = self.get_scalings_for_boundary_condition_discrete(timestep)
|
848 |
-
|
849 |
-
# 4. Different Parameterization:
|
850 |
-
parameterization = self.config.prediction_type
|
851 |
-
|
852 |
-
if parameterization == "epsilon": # noise-prediction
|
853 |
-
pred_x0 = (sample - beta_prod_t.sqrt() * model_output) / alpha_prod_t.sqrt()
|
854 |
-
|
855 |
-
elif parameterization == "sample": # x-prediction
|
856 |
-
pred_x0 = model_output
|
857 |
-
|
858 |
-
elif parameterization == "v_prediction": # v-prediction
|
859 |
-
pred_x0 = alpha_prod_t.sqrt() * sample - beta_prod_t.sqrt() * model_output
|
860 |
-
|
861 |
-
# 4. Denoise model output using boundary conditions
|
862 |
-
denoised = c_out * pred_x0 + c_skip * sample
|
863 |
-
|
864 |
-
# 5. Sample z ~ N(0, I), For MultiStep Inference
|
865 |
-
# Noise is not used for one-step sampling.
|
866 |
-
if len(self.timesteps) > 1:
|
867 |
-
noise = torch.randn(model_output.shape).to(model_output.device)
|
868 |
-
prev_sample = (
|
869 |
-
alpha_prod_t_prev.sqrt() * denoised + beta_prod_t_prev.sqrt() * noise
|
870 |
-
)
|
871 |
-
else:
|
872 |
-
prev_sample = denoised
|
873 |
-
|
874 |
-
if not return_dict:
|
875 |
-
return (prev_sample, denoised)
|
876 |
-
|
877 |
-
return LCMSchedulerOutput(prev_sample=prev_sample, denoised=denoised)
|
878 |
-
|
879 |
-
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise
|
880 |
-
def add_noise(
|
881 |
-
self,
|
882 |
-
original_samples: torch.FloatTensor,
|
883 |
-
noise: torch.FloatTensor,
|
884 |
-
timesteps: torch.IntTensor,
|
885 |
-
) -> torch.FloatTensor:
|
886 |
-
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples
|
887 |
-
alphas_cumprod = self.alphas_cumprod.to(
|
888 |
-
device=original_samples.device, dtype=original_samples.dtype
|
889 |
-
)
|
890 |
-
timesteps = timesteps.to(original_samples.device)
|
891 |
-
|
892 |
-
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
|
893 |
-
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
|
894 |
-
while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
|
895 |
-
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
|
896 |
-
|
897 |
-
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
|
898 |
-
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
|
899 |
-
while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
|
900 |
-
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
|
901 |
-
|
902 |
-
noisy_samples = (
|
903 |
-
sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
|
904 |
-
)
|
905 |
-
return noisy_samples
|
906 |
-
|
907 |
-
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.get_velocity
|
908 |
-
def get_velocity(
|
909 |
-
self,
|
910 |
-
sample: torch.FloatTensor,
|
911 |
-
noise: torch.FloatTensor,
|
912 |
-
timesteps: torch.IntTensor,
|
913 |
-
) -> torch.FloatTensor:
|
914 |
-
# Make sure alphas_cumprod and timestep have same device and dtype as sample
|
915 |
-
alphas_cumprod = self.alphas_cumprod.to(
|
916 |
-
device=sample.device, dtype=sample.dtype
|
917 |
-
)
|
918 |
-
timesteps = timesteps.to(sample.device)
|
919 |
-
|
920 |
-
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
|
921 |
-
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
|
922 |
-
while len(sqrt_alpha_prod.shape) < len(sample.shape):
|
923 |
-
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
|
924 |
-
|
925 |
-
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
|
926 |
-
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
|
927 |
-
while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
|
928 |
-
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
|
929 |
-
|
930 |
-
velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
|
931 |
-
return velocity
|
932 |
-
|
933 |
-
def __len__(self):
|
934 |
-
return self.config.num_train_timesteps
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
latent_consistency_txt2img.py
DELETED
@@ -1,836 +0,0 @@
|
|
1 |
-
# Copyright 2023 Stanford University Team and The HuggingFace Team. All rights reserved.
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
|
15 |
-
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion
|
16 |
-
# and https://github.com/hojonathanho/diffusion
|
17 |
-
|
18 |
-
import math
|
19 |
-
from dataclasses import dataclass
|
20 |
-
from typing import Any, Dict, List, Optional, Tuple, Union
|
21 |
-
|
22 |
-
import numpy as np
|
23 |
-
import torch
|
24 |
-
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
|
25 |
-
|
26 |
-
from diffusers import (
|
27 |
-
AutoencoderKL,
|
28 |
-
ConfigMixin,
|
29 |
-
DiffusionPipeline,
|
30 |
-
SchedulerMixin,
|
31 |
-
UNet2DConditionModel,
|
32 |
-
logging,
|
33 |
-
)
|
34 |
-
from diffusers.configuration_utils import register_to_config
|
35 |
-
from diffusers.image_processor import VaeImageProcessor
|
36 |
-
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
37 |
-
from diffusers.pipelines.stable_diffusion.safety_checker import (
|
38 |
-
StableDiffusionSafetyChecker,
|
39 |
-
)
|
40 |
-
from diffusers.utils import BaseOutput
|
41 |
-
|
42 |
-
|
43 |
-
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
44 |
-
|
45 |
-
|
46 |
-
class LatentConsistencyModelPipeline(DiffusionPipeline):
|
47 |
-
_optional_components = ["scheduler"]
|
48 |
-
|
49 |
-
def __init__(
|
50 |
-
self,
|
51 |
-
vae: AutoencoderKL,
|
52 |
-
text_encoder: CLIPTextModel,
|
53 |
-
tokenizer: CLIPTokenizer,
|
54 |
-
unet: UNet2DConditionModel,
|
55 |
-
scheduler: "LCMScheduler",
|
56 |
-
safety_checker: StableDiffusionSafetyChecker,
|
57 |
-
feature_extractor: CLIPImageProcessor,
|
58 |
-
requires_safety_checker: bool = True,
|
59 |
-
):
|
60 |
-
super().__init__()
|
61 |
-
|
62 |
-
scheduler = (
|
63 |
-
scheduler
|
64 |
-
if scheduler is not None
|
65 |
-
else LCMScheduler(
|
66 |
-
beta_start=0.00085,
|
67 |
-
beta_end=0.0120,
|
68 |
-
beta_schedule="scaled_linear",
|
69 |
-
prediction_type="epsilon",
|
70 |
-
)
|
71 |
-
)
|
72 |
-
|
73 |
-
self.register_modules(
|
74 |
-
vae=vae,
|
75 |
-
text_encoder=text_encoder,
|
76 |
-
tokenizer=tokenizer,
|
77 |
-
unet=unet,
|
78 |
-
scheduler=scheduler,
|
79 |
-
safety_checker=safety_checker,
|
80 |
-
feature_extractor=feature_extractor,
|
81 |
-
)
|
82 |
-
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
83 |
-
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
84 |
-
|
85 |
-
def _encode_prompt(
|
86 |
-
self,
|
87 |
-
prompt,
|
88 |
-
device,
|
89 |
-
num_images_per_prompt,
|
90 |
-
prompt_embeds: None,
|
91 |
-
):
|
92 |
-
r"""
|
93 |
-
Encodes the prompt into text encoder hidden states.
|
94 |
-
Args:
|
95 |
-
prompt (`str` or `List[str]`, *optional*):
|
96 |
-
prompt to be encoded
|
97 |
-
device: (`torch.device`):
|
98 |
-
torch device
|
99 |
-
num_images_per_prompt (`int`):
|
100 |
-
number of images that should be generated per prompt
|
101 |
-
prompt_embeds (`torch.FloatTensor`, *optional*):
|
102 |
-
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
103 |
-
provided, text embeddings will be generated from `prompt` input argument.
|
104 |
-
"""
|
105 |
-
|
106 |
-
if prompt is not None and isinstance(prompt, str):
|
107 |
-
pass
|
108 |
-
elif prompt is not None and isinstance(prompt, list):
|
109 |
-
len(prompt)
|
110 |
-
else:
|
111 |
-
prompt_embeds.shape[0]
|
112 |
-
|
113 |
-
if prompt_embeds is None:
|
114 |
-
text_inputs = self.tokenizer(
|
115 |
-
prompt,
|
116 |
-
padding="max_length",
|
117 |
-
max_length=self.tokenizer.model_max_length,
|
118 |
-
truncation=True,
|
119 |
-
return_tensors="pt",
|
120 |
-
)
|
121 |
-
text_input_ids = text_inputs.input_ids
|
122 |
-
untruncated_ids = self.tokenizer(
|
123 |
-
prompt, padding="longest", return_tensors="pt"
|
124 |
-
).input_ids
|
125 |
-
|
126 |
-
if untruncated_ids.shape[-1] >= text_input_ids.shape[
|
127 |
-
-1
|
128 |
-
] and not torch.equal(text_input_ids, untruncated_ids):
|
129 |
-
removed_text = self.tokenizer.batch_decode(
|
130 |
-
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
131 |
-
)
|
132 |
-
logger.warning(
|
133 |
-
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
134 |
-
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
135 |
-
)
|
136 |
-
|
137 |
-
if (
|
138 |
-
hasattr(self.text_encoder.config, "use_attention_mask")
|
139 |
-
and self.text_encoder.config.use_attention_mask
|
140 |
-
):
|
141 |
-
attention_mask = text_inputs.attention_mask.to(device)
|
142 |
-
else:
|
143 |
-
attention_mask = None
|
144 |
-
|
145 |
-
prompt_embeds = self.text_encoder(
|
146 |
-
text_input_ids.to(device),
|
147 |
-
attention_mask=attention_mask,
|
148 |
-
)
|
149 |
-
prompt_embeds = prompt_embeds[0]
|
150 |
-
|
151 |
-
if self.text_encoder is not None:
|
152 |
-
prompt_embeds_dtype = self.text_encoder.dtype
|
153 |
-
elif self.unet is not None:
|
154 |
-
prompt_embeds_dtype = self.unet.dtype
|
155 |
-
else:
|
156 |
-
prompt_embeds_dtype = prompt_embeds.dtype
|
157 |
-
|
158 |
-
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
159 |
-
|
160 |
-
bs_embed, seq_len, _ = prompt_embeds.shape
|
161 |
-
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
162 |
-
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
163 |
-
prompt_embeds = prompt_embeds.view(
|
164 |
-
bs_embed * num_images_per_prompt, seq_len, -1
|
165 |
-
)
|
166 |
-
|
167 |
-
# Don't need to get uncond prompt embedding because of LCM Guided Distillation
|
168 |
-
return prompt_embeds
|
169 |
-
|
170 |
-
def run_safety_checker(self, image, device, dtype):
|
171 |
-
if self.safety_checker is None:
|
172 |
-
has_nsfw_concept = None
|
173 |
-
else:
|
174 |
-
if torch.is_tensor(image):
|
175 |
-
feature_extractor_input = self.image_processor.postprocess(
|
176 |
-
image, output_type="pil"
|
177 |
-
)
|
178 |
-
else:
|
179 |
-
feature_extractor_input = self.image_processor.numpy_to_pil(image)
|
180 |
-
safety_checker_input = self.feature_extractor(
|
181 |
-
feature_extractor_input, return_tensors="pt"
|
182 |
-
).to(device)
|
183 |
-
image, has_nsfw_concept = self.safety_checker(
|
184 |
-
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
|
185 |
-
)
|
186 |
-
return image, has_nsfw_concept
|
187 |
-
|
188 |
-
def prepare_latents(
|
189 |
-
self,
|
190 |
-
batch_size,
|
191 |
-
num_channels_latents,
|
192 |
-
height,
|
193 |
-
width,
|
194 |
-
dtype,
|
195 |
-
device,
|
196 |
-
latents=None,
|
197 |
-
generator=None,
|
198 |
-
):
|
199 |
-
shape = (
|
200 |
-
batch_size,
|
201 |
-
num_channels_latents,
|
202 |
-
height // self.vae_scale_factor,
|
203 |
-
width // self.vae_scale_factor,
|
204 |
-
)
|
205 |
-
if generator is None:
|
206 |
-
generator = torch.Generator()
|
207 |
-
generator.manual_seed(torch.randint(0, 2 ** 32, (1,)).item())
|
208 |
-
|
209 |
-
if latents is None:
|
210 |
-
latents = torch.randn(shape, dtype=dtype, generator=generator).to(device)
|
211 |
-
else:
|
212 |
-
latents = latents.to(device)
|
213 |
-
# scale the initial noise by the standard deviation required by the scheduler
|
214 |
-
latents = latents * self.scheduler.init_noise_sigma
|
215 |
-
return latents
|
216 |
-
|
217 |
-
def get_w_embedding(self, w, embedding_dim=512, dtype=torch.float32):
|
218 |
-
"""
|
219 |
-
see https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
220 |
-
Args:
|
221 |
-
timesteps: torch.Tensor: generate embedding vectors at these timesteps
|
222 |
-
embedding_dim: int: dimension of the embeddings to generate
|
223 |
-
dtype: data type of the generated embeddings
|
224 |
-
Returns:
|
225 |
-
embedding vectors with shape `(len(timesteps), embedding_dim)`
|
226 |
-
"""
|
227 |
-
assert len(w.shape) == 1
|
228 |
-
w = w * 1000.0
|
229 |
-
|
230 |
-
half_dim = embedding_dim // 2
|
231 |
-
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
|
232 |
-
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
|
233 |
-
emb = w.to(dtype)[:, None] * emb[None, :]
|
234 |
-
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
235 |
-
if embedding_dim % 2 == 1: # zero pad
|
236 |
-
emb = torch.nn.functional.pad(emb, (0, 1))
|
237 |
-
assert emb.shape == (w.shape[0], embedding_dim)
|
238 |
-
return emb
|
239 |
-
|
240 |
-
@torch.no_grad()
|
241 |
-
def __call__(
|
242 |
-
self,
|
243 |
-
prompt: Union[str, List[str]] = None,
|
244 |
-
height: Optional[int] = 768,
|
245 |
-
width: Optional[int] = 768,
|
246 |
-
guidance_scale: float = 7.5,
|
247 |
-
num_images_per_prompt: Optional[int] = 1,
|
248 |
-
latents: Optional[torch.FloatTensor] = None,
|
249 |
-
generator: Optional[torch.Generator] = None,
|
250 |
-
num_inference_steps: int = 4,
|
251 |
-
lcm_origin_steps: int = 50,
|
252 |
-
prompt_embeds: Optional[torch.FloatTensor] = None,
|
253 |
-
output_type: Optional[str] = "pil",
|
254 |
-
return_dict: bool = True,
|
255 |
-
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
256 |
-
):
|
257 |
-
# 0. Default height and width to unet
|
258 |
-
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
259 |
-
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
260 |
-
|
261 |
-
# 2. Define call parameters
|
262 |
-
if prompt is not None and isinstance(prompt, str):
|
263 |
-
batch_size = 1
|
264 |
-
elif prompt is not None and isinstance(prompt, list):
|
265 |
-
batch_size = len(prompt)
|
266 |
-
else:
|
267 |
-
batch_size = prompt_embeds.shape[0]
|
268 |
-
|
269 |
-
device = self._execution_device
|
270 |
-
# do_classifier_free_guidance = guidance_scale > 0.0 # In LCM Implementation: cfg_noise = noise_cond + cfg_scale * (noise_cond - noise_uncond) , (cfg_scale > 0.0 using CFG)
|
271 |
-
|
272 |
-
# 3. Encode input prompt
|
273 |
-
prompt_embeds = self._encode_prompt(
|
274 |
-
prompt,
|
275 |
-
device,
|
276 |
-
num_images_per_prompt,
|
277 |
-
prompt_embeds=prompt_embeds,
|
278 |
-
)
|
279 |
-
|
280 |
-
# 4. Prepare timesteps
|
281 |
-
self.scheduler.set_timesteps(num_inference_steps, lcm_origin_steps)
|
282 |
-
timesteps = self.scheduler.timesteps
|
283 |
-
|
284 |
-
# 5. Prepare latent variable
|
285 |
-
num_channels_latents = self.unet.config.in_channels
|
286 |
-
latents = self.prepare_latents(
|
287 |
-
batch_size * num_images_per_prompt,
|
288 |
-
num_channels_latents,
|
289 |
-
height,
|
290 |
-
width,
|
291 |
-
prompt_embeds.dtype,
|
292 |
-
device,
|
293 |
-
latents,
|
294 |
-
generator
|
295 |
-
)
|
296 |
-
bs = batch_size * num_images_per_prompt
|
297 |
-
|
298 |
-
# 6. Get Guidance Scale Embedding
|
299 |
-
w = torch.tensor(guidance_scale).repeat(bs)
|
300 |
-
w_embedding = self.get_w_embedding(w, embedding_dim=256).to(
|
301 |
-
device=device, dtype=latents.dtype
|
302 |
-
)
|
303 |
-
|
304 |
-
# 7. LCM MultiStep Sampling Loop:
|
305 |
-
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
306 |
-
for i, t in enumerate(timesteps):
|
307 |
-
ts = torch.full((bs,), t, device=device, dtype=torch.long)
|
308 |
-
latents = latents.to(prompt_embeds.dtype)
|
309 |
-
|
310 |
-
# model prediction (v-prediction, eps, x)
|
311 |
-
model_pred = self.unet(
|
312 |
-
latents,
|
313 |
-
ts,
|
314 |
-
timestep_cond=w_embedding,
|
315 |
-
encoder_hidden_states=prompt_embeds,
|
316 |
-
cross_attention_kwargs=cross_attention_kwargs,
|
317 |
-
return_dict=False,
|
318 |
-
)[0]
|
319 |
-
|
320 |
-
# compute the previous noisy sample x_t -> x_t-1
|
321 |
-
latents, denoised = self.scheduler.step(
|
322 |
-
model_pred, i, t, latents, return_dict=False
|
323 |
-
)
|
324 |
-
|
325 |
-
# # call the callback, if provided
|
326 |
-
# if i == len(timesteps) - 1:
|
327 |
-
progress_bar.update()
|
328 |
-
|
329 |
-
denoised = denoised.to(prompt_embeds.dtype)
|
330 |
-
if not output_type == "latent":
|
331 |
-
image = self.vae.decode(
|
332 |
-
denoised / self.vae.config.scaling_factor, return_dict=False
|
333 |
-
)[0]
|
334 |
-
image, has_nsfw_concept = self.run_safety_checker(
|
335 |
-
image, device, prompt_embeds.dtype
|
336 |
-
)
|
337 |
-
else:
|
338 |
-
image = denoised
|
339 |
-
has_nsfw_concept = None
|
340 |
-
|
341 |
-
if has_nsfw_concept is None:
|
342 |
-
do_denormalize = [True] * image.shape[0]
|
343 |
-
else:
|
344 |
-
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
345 |
-
|
346 |
-
image = self.image_processor.postprocess(
|
347 |
-
image, output_type=output_type, do_denormalize=do_denormalize
|
348 |
-
)
|
349 |
-
|
350 |
-
if not return_dict:
|
351 |
-
return (image, has_nsfw_concept)
|
352 |
-
|
353 |
-
return StableDiffusionPipelineOutput(
|
354 |
-
images=image, nsfw_content_detected=has_nsfw_concept
|
355 |
-
)
|
356 |
-
|
357 |
-
|
358 |
-
@dataclass
|
359 |
-
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM
|
360 |
-
class LCMSchedulerOutput(BaseOutput):
|
361 |
-
"""
|
362 |
-
Output class for the scheduler's `step` function output.
|
363 |
-
Args:
|
364 |
-
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
|
365 |
-
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
|
366 |
-
denoising loop.
|
367 |
-
pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
|
368 |
-
The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
|
369 |
-
`pred_original_sample` can be used to preview progress or for guidance.
|
370 |
-
"""
|
371 |
-
|
372 |
-
prev_sample: torch.FloatTensor
|
373 |
-
denoised: Optional[torch.FloatTensor] = None
|
374 |
-
|
375 |
-
|
376 |
-
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
|
377 |
-
def betas_for_alpha_bar(
|
378 |
-
num_diffusion_timesteps,
|
379 |
-
max_beta=0.999,
|
380 |
-
alpha_transform_type="cosine",
|
381 |
-
):
|
382 |
-
"""
|
383 |
-
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
384 |
-
(1-beta) over time from t = [0,1].
|
385 |
-
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
|
386 |
-
to that part of the diffusion process.
|
387 |
-
Args:
|
388 |
-
num_diffusion_timesteps (`int`): the number of betas to produce.
|
389 |
-
max_beta (`float`): the maximum beta to use; use values lower than 1 to
|
390 |
-
prevent singularities.
|
391 |
-
alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
|
392 |
-
Choose from `cosine` or `exp`
|
393 |
-
Returns:
|
394 |
-
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
|
395 |
-
"""
|
396 |
-
if alpha_transform_type == "cosine":
|
397 |
-
|
398 |
-
def alpha_bar_fn(t):
|
399 |
-
return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2
|
400 |
-
|
401 |
-
elif alpha_transform_type == "exp":
|
402 |
-
|
403 |
-
def alpha_bar_fn(t):
|
404 |
-
return math.exp(t * -12.0)
|
405 |
-
|
406 |
-
else:
|
407 |
-
raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}")
|
408 |
-
|
409 |
-
betas = []
|
410 |
-
for i in range(num_diffusion_timesteps):
|
411 |
-
t1 = i / num_diffusion_timesteps
|
412 |
-
t2 = (i + 1) / num_diffusion_timesteps
|
413 |
-
betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
|
414 |
-
return torch.tensor(betas, dtype=torch.float32)
|
415 |
-
|
416 |
-
|
417 |
-
def rescale_zero_terminal_snr(betas):
|
418 |
-
"""
|
419 |
-
Rescales betas to have zero terminal SNR Based on https://arxiv.org/pdf/2305.08891.pdf (Algorithm 1)
|
420 |
-
Args:
|
421 |
-
betas (`torch.FloatTensor`):
|
422 |
-
the betas that the scheduler is being initialized with.
|
423 |
-
Returns:
|
424 |
-
`torch.FloatTensor`: rescaled betas with zero terminal SNR
|
425 |
-
"""
|
426 |
-
# Convert betas to alphas_bar_sqrt
|
427 |
-
alphas = 1.0 - betas
|
428 |
-
alphas_cumprod = torch.cumprod(alphas, dim=0)
|
429 |
-
alphas_bar_sqrt = alphas_cumprod.sqrt()
|
430 |
-
|
431 |
-
# Store old values.
|
432 |
-
alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
|
433 |
-
alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()
|
434 |
-
|
435 |
-
# Shift so the last timestep is zero.
|
436 |
-
alphas_bar_sqrt -= alphas_bar_sqrt_T
|
437 |
-
|
438 |
-
# Scale so the first timestep is back to the old value.
|
439 |
-
alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)
|
440 |
-
|
441 |
-
# Convert alphas_bar_sqrt to betas
|
442 |
-
alphas_bar = alphas_bar_sqrt**2 # Revert sqrt
|
443 |
-
alphas = alphas_bar[1:] / alphas_bar[:-1] # Revert cumprod
|
444 |
-
alphas = torch.cat([alphas_bar[0:1], alphas])
|
445 |
-
betas = 1 - alphas
|
446 |
-
|
447 |
-
return betas
|
448 |
-
|
449 |
-
|
450 |
-
class LCMScheduler(SchedulerMixin, ConfigMixin):
|
451 |
-
"""
|
452 |
-
`LCMScheduler` extends the denoising procedure introduced in denoising diffusion probabilistic models (DDPMs) with
|
453 |
-
non-Markovian guidance.
|
454 |
-
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
|
455 |
-
methods the library implements for all schedulers such as loading and saving.
|
456 |
-
Args:
|
457 |
-
num_train_timesteps (`int`, defaults to 1000):
|
458 |
-
The number of diffusion steps to train the model.
|
459 |
-
beta_start (`float`, defaults to 0.0001):
|
460 |
-
The starting `beta` value of inference.
|
461 |
-
beta_end (`float`, defaults to 0.02):
|
462 |
-
The final `beta` value.
|
463 |
-
beta_schedule (`str`, defaults to `"linear"`):
|
464 |
-
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
|
465 |
-
`linear`, `scaled_linear`, or `squaredcos_cap_v2`.
|
466 |
-
trained_betas (`np.ndarray`, *optional*):
|
467 |
-
Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
|
468 |
-
clip_sample (`bool`, defaults to `True`):
|
469 |
-
Clip the predicted sample for numerical stability.
|
470 |
-
clip_sample_range (`float`, defaults to 1.0):
|
471 |
-
The maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
|
472 |
-
set_alpha_to_one (`bool`, defaults to `True`):
|
473 |
-
Each diffusion step uses the alphas product value at that step and at the previous one. For the final step
|
474 |
-
there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`,
|
475 |
-
otherwise it uses the alpha value at step 0.
|
476 |
-
steps_offset (`int`, defaults to 0):
|
477 |
-
An offset added to the inference steps. You can use a combination of `offset=1` and
|
478 |
-
`set_alpha_to_one=False` to make the last step use step 0 for the previous alpha product like in Stable
|
479 |
-
Diffusion.
|
480 |
-
prediction_type (`str`, defaults to `epsilon`, *optional*):
|
481 |
-
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
|
482 |
-
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
|
483 |
-
Video](https://imagen.research.google/video/paper.pdf) paper).
|
484 |
-
thresholding (`bool`, defaults to `False`):
|
485 |
-
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
|
486 |
-
as Stable Diffusion.
|
487 |
-
dynamic_thresholding_ratio (`float`, defaults to 0.995):
|
488 |
-
The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
|
489 |
-
sample_max_value (`float`, defaults to 1.0):
|
490 |
-
The threshold value for dynamic thresholding. Valid only when `thresholding=True`.
|
491 |
-
timestep_spacing (`str`, defaults to `"leading"`):
|
492 |
-
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
|
493 |
-
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
|
494 |
-
rescale_betas_zero_snr (`bool`, defaults to `False`):
|
495 |
-
Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
|
496 |
-
dark samples instead of limiting it to samples with medium brightness. Loosely related to
|
497 |
-
[`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
|
498 |
-
"""
|
499 |
-
|
500 |
-
# _compatibles = [e.name for e in KarrasDiffusionSchedulers]
|
501 |
-
order = 1
|
502 |
-
|
503 |
-
@register_to_config
|
504 |
-
def __init__(
|
505 |
-
self,
|
506 |
-
num_train_timesteps: int = 1000,
|
507 |
-
beta_start: float = 0.0001,
|
508 |
-
beta_end: float = 0.02,
|
509 |
-
beta_schedule: str = "linear",
|
510 |
-
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
|
511 |
-
clip_sample: bool = True,
|
512 |
-
set_alpha_to_one: bool = True,
|
513 |
-
steps_offset: int = 0,
|
514 |
-
prediction_type: str = "epsilon",
|
515 |
-
thresholding: bool = False,
|
516 |
-
dynamic_thresholding_ratio: float = 0.995,
|
517 |
-
clip_sample_range: float = 1.0,
|
518 |
-
sample_max_value: float = 1.0,
|
519 |
-
timestep_spacing: str = "leading",
|
520 |
-
rescale_betas_zero_snr: bool = False,
|
521 |
-
):
|
522 |
-
if trained_betas is not None:
|
523 |
-
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
|
524 |
-
elif beta_schedule == "linear":
|
525 |
-
self.betas = torch.linspace(
|
526 |
-
beta_start, beta_end, num_train_timesteps, dtype=torch.float32
|
527 |
-
)
|
528 |
-
elif beta_schedule == "scaled_linear":
|
529 |
-
# this schedule is very specific to the latent diffusion model.
|
530 |
-
self.betas = (
|
531 |
-
torch.linspace(
|
532 |
-
beta_start**0.5,
|
533 |
-
beta_end**0.5,
|
534 |
-
num_train_timesteps,
|
535 |
-
dtype=torch.float32,
|
536 |
-
)
|
537 |
-
** 2
|
538 |
-
)
|
539 |
-
elif beta_schedule == "squaredcos_cap_v2":
|
540 |
-
# Glide cosine schedule
|
541 |
-
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
542 |
-
else:
|
543 |
-
raise NotImplementedError(
|
544 |
-
f"{beta_schedule} does is not implemented for {self.__class__}"
|
545 |
-
)
|
546 |
-
|
547 |
-
# Rescale for zero SNR
|
548 |
-
if rescale_betas_zero_snr:
|
549 |
-
self.betas = rescale_zero_terminal_snr(self.betas)
|
550 |
-
|
551 |
-
self.alphas = 1.0 - self.betas
|
552 |
-
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
|
553 |
-
|
554 |
-
# At every step in ddim, we are looking into the previous alphas_cumprod
|
555 |
-
# For the final step, there is no previous alphas_cumprod because we are already at 0
|
556 |
-
# `set_alpha_to_one` decides whether we set this parameter simply to one or
|
557 |
-
# whether we use the final alpha of the "non-previous" one.
|
558 |
-
self.final_alpha_cumprod = (
|
559 |
-
torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0]
|
560 |
-
)
|
561 |
-
|
562 |
-
# standard deviation of the initial noise distribution
|
563 |
-
self.init_noise_sigma = 1.0
|
564 |
-
|
565 |
-
# setable values
|
566 |
-
self.num_inference_steps = None
|
567 |
-
self.timesteps = torch.from_numpy(
|
568 |
-
np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64)
|
569 |
-
)
|
570 |
-
|
571 |
-
def scale_model_input(
|
572 |
-
self, sample: torch.FloatTensor, timestep: Optional[int] = None
|
573 |
-
) -> torch.FloatTensor:
|
574 |
-
"""
|
575 |
-
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
|
576 |
-
current timestep.
|
577 |
-
Args:
|
578 |
-
sample (`torch.FloatTensor`):
|
579 |
-
The input sample.
|
580 |
-
timestep (`int`, *optional*):
|
581 |
-
The current timestep in the diffusion chain.
|
582 |
-
Returns:
|
583 |
-
`torch.FloatTensor`:
|
584 |
-
A scaled input sample.
|
585 |
-
"""
|
586 |
-
return sample
|
587 |
-
|
588 |
-
def _get_variance(self, timestep, prev_timestep):
|
589 |
-
alpha_prod_t = self.alphas_cumprod[timestep]
|
590 |
-
alpha_prod_t_prev = (
|
591 |
-
self.alphas_cumprod[prev_timestep]
|
592 |
-
if prev_timestep >= 0
|
593 |
-
else self.final_alpha_cumprod
|
594 |
-
)
|
595 |
-
beta_prod_t = 1 - alpha_prod_t
|
596 |
-
beta_prod_t_prev = 1 - alpha_prod_t_prev
|
597 |
-
|
598 |
-
variance = (beta_prod_t_prev / beta_prod_t) * (
|
599 |
-
1 - alpha_prod_t / alpha_prod_t_prev
|
600 |
-
)
|
601 |
-
|
602 |
-
return variance
|
603 |
-
|
604 |
-
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
|
605 |
-
def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor:
|
606 |
-
"""
|
607 |
-
"Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
|
608 |
-
prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
|
609 |
-
s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
|
610 |
-
pixels from saturation at each step. We find that dynamic thresholding results in significantly better
|
611 |
-
photorealism as well as better image-text alignment, especially when using very large guidance weights."
|
612 |
-
https://arxiv.org/abs/2205.11487
|
613 |
-
"""
|
614 |
-
dtype = sample.dtype
|
615 |
-
batch_size, channels, height, width = sample.shape
|
616 |
-
|
617 |
-
if dtype not in (torch.float32, torch.float64):
|
618 |
-
sample = (
|
619 |
-
sample.float()
|
620 |
-
) # upcast for quantile calculation, and clamp not implemented for cpu half
|
621 |
-
|
622 |
-
# Flatten sample for doing quantile calculation along each image
|
623 |
-
sample = sample.reshape(batch_size, channels * height * width)
|
624 |
-
|
625 |
-
abs_sample = sample.abs() # "a certain percentile absolute pixel value"
|
626 |
-
|
627 |
-
s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
|
628 |
-
s = torch.clamp(
|
629 |
-
s, min=1, max=self.config.sample_max_value
|
630 |
-
) # When clamped to min=1, equivalent to standard clipping to [-1, 1]
|
631 |
-
|
632 |
-
s = s.unsqueeze(1) # (batch_size, 1) because clamp will broadcast along dim=0
|
633 |
-
sample = (
|
634 |
-
torch.clamp(sample, -s, s) / s
|
635 |
-
) # "we threshold xt0 to the range [-s, s] and then divide by s"
|
636 |
-
|
637 |
-
sample = sample.reshape(batch_size, channels, height, width)
|
638 |
-
sample = sample.to(dtype)
|
639 |
-
|
640 |
-
return sample
|
641 |
-
|
642 |
-
def set_timesteps(
|
643 |
-
self,
|
644 |
-
num_inference_steps: int,
|
645 |
-
lcm_origin_steps: int,
|
646 |
-
device: Union[str, torch.device] = None,
|
647 |
-
):
|
648 |
-
"""
|
649 |
-
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
650 |
-
Args:
|
651 |
-
num_inference_steps (`int`):
|
652 |
-
The number of diffusion steps used when generating samples with a pre-trained model.
|
653 |
-
"""
|
654 |
-
|
655 |
-
if num_inference_steps > self.config.num_train_timesteps:
|
656 |
-
raise ValueError(
|
657 |
-
f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
|
658 |
-
f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
|
659 |
-
f" maximal {self.config.num_train_timesteps} timesteps."
|
660 |
-
)
|
661 |
-
|
662 |
-
self.num_inference_steps = num_inference_steps
|
663 |
-
|
664 |
-
# LCM Timesteps Setting: # Linear Spacing
|
665 |
-
c = self.config.num_train_timesteps // lcm_origin_steps
|
666 |
-
lcm_origin_timesteps = (
|
667 |
-
np.asarray(list(range(1, lcm_origin_steps + 1))) * c - 1
|
668 |
-
) # LCM Training Steps Schedule
|
669 |
-
skipping_step = len(lcm_origin_timesteps) // num_inference_steps
|
670 |
-
timesteps = lcm_origin_timesteps[::-skipping_step][
|
671 |
-
:num_inference_steps
|
672 |
-
] # LCM Inference Steps Schedule
|
673 |
-
|
674 |
-
self.timesteps = torch.from_numpy(timesteps.copy()).to(device)
|
675 |
-
|
676 |
-
def get_scalings_for_boundary_condition_discrete(self, t):
|
677 |
-
self.sigma_data = 0.5 # Default: 0.5
|
678 |
-
|
679 |
-
# By dividing 0.1: This is almost a delta function at t=0.
|
680 |
-
c_skip = self.sigma_data**2 / ((t / 0.1) ** 2 + self.sigma_data**2)
|
681 |
-
c_out = (t / 0.1) / ((t / 0.1) ** 2 + self.sigma_data**2) ** 0.5
|
682 |
-
return c_skip, c_out
|
683 |
-
|
684 |
-
def step(
|
685 |
-
self,
|
686 |
-
model_output: torch.FloatTensor,
|
687 |
-
timeindex: int,
|
688 |
-
timestep: int,
|
689 |
-
sample: torch.FloatTensor,
|
690 |
-
eta: float = 0.0,
|
691 |
-
use_clipped_model_output: bool = False,
|
692 |
-
generator=None,
|
693 |
-
variance_noise: Optional[torch.FloatTensor] = None,
|
694 |
-
return_dict: bool = True,
|
695 |
-
) -> Union[LCMSchedulerOutput, Tuple]:
|
696 |
-
"""
|
697 |
-
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
|
698 |
-
process from the learned model outputs (most often the predicted noise).
|
699 |
-
Args:
|
700 |
-
model_output (`torch.FloatTensor`):
|
701 |
-
The direct output from learned diffusion model.
|
702 |
-
timestep (`float`):
|
703 |
-
The current discrete timestep in the diffusion chain.
|
704 |
-
sample (`torch.FloatTensor`):
|
705 |
-
A current instance of a sample created by the diffusion process.
|
706 |
-
eta (`float`):
|
707 |
-
The weight of noise for added noise in diffusion step.
|
708 |
-
use_clipped_model_output (`bool`, defaults to `False`):
|
709 |
-
If `True`, computes "corrected" `model_output` from the clipped predicted original sample. Necessary
|
710 |
-
because predicted original sample is clipped to [-1, 1] when `self.config.clip_sample` is `True`. If no
|
711 |
-
clipping has happened, "corrected" `model_output` would coincide with the one provided as input and
|
712 |
-
`use_clipped_model_output` has no effect.
|
713 |
-
generator (`torch.Generator`, *optional*):
|
714 |
-
A random number generator.
|
715 |
-
variance_noise (`torch.FloatTensor`):
|
716 |
-
Alternative to generating noise with `generator` by directly providing the noise for the variance
|
717 |
-
itself. Useful for methods such as [`CycleDiffusion`].
|
718 |
-
return_dict (`bool`, *optional*, defaults to `True`):
|
719 |
-
Whether or not to return a [`~schedulers.scheduling_lcm.LCMSchedulerOutput`] or `tuple`.
|
720 |
-
Returns:
|
721 |
-
[`~schedulers.scheduling_utils.LCMSchedulerOutput`] or `tuple`:
|
722 |
-
If return_dict is `True`, [`~schedulers.scheduling_lcm.LCMSchedulerOutput`] is returned, otherwise a
|
723 |
-
tuple is returned where the first element is the sample tensor.
|
724 |
-
"""
|
725 |
-
if self.num_inference_steps is None:
|
726 |
-
raise ValueError(
|
727 |
-
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
|
728 |
-
)
|
729 |
-
|
730 |
-
# 1. get previous step value
|
731 |
-
prev_timeindex = timeindex + 1
|
732 |
-
if prev_timeindex < len(self.timesteps):
|
733 |
-
prev_timestep = self.timesteps[prev_timeindex]
|
734 |
-
else:
|
735 |
-
prev_timestep = timestep
|
736 |
-
|
737 |
-
# 2. compute alphas, betas
|
738 |
-
alpha_prod_t = self.alphas_cumprod[timestep]
|
739 |
-
alpha_prod_t_prev = (
|
740 |
-
self.alphas_cumprod[prev_timestep]
|
741 |
-
if prev_timestep >= 0
|
742 |
-
else self.final_alpha_cumprod
|
743 |
-
)
|
744 |
-
|
745 |
-
beta_prod_t = 1 - alpha_prod_t
|
746 |
-
beta_prod_t_prev = 1 - alpha_prod_t_prev
|
747 |
-
|
748 |
-
# 3. Get scalings for boundary conditions
|
749 |
-
c_skip, c_out = self.get_scalings_for_boundary_condition_discrete(timestep)
|
750 |
-
|
751 |
-
# 4. Different Parameterization:
|
752 |
-
parameterization = self.config.prediction_type
|
753 |
-
|
754 |
-
if parameterization == "epsilon": # noise-prediction
|
755 |
-
pred_x0 = (sample - beta_prod_t.sqrt() * model_output) / alpha_prod_t.sqrt()
|
756 |
-
|
757 |
-
elif parameterization == "sample": # x-prediction
|
758 |
-
pred_x0 = model_output
|
759 |
-
|
760 |
-
elif parameterization == "v_prediction": # v-prediction
|
761 |
-
pred_x0 = alpha_prod_t.sqrt() * sample - beta_prod_t.sqrt() * model_output
|
762 |
-
|
763 |
-
# 4. Denoise model output using boundary conditions
|
764 |
-
denoised = c_out * pred_x0 + c_skip * sample
|
765 |
-
|
766 |
-
# 5. Sample z ~ N(0, I), For MultiStep Inference
|
767 |
-
# Noise is not used for one-step sampling.
|
768 |
-
if len(self.timesteps) > 1:
|
769 |
-
noise = torch.randn(model_output.shape).to(model_output.device)
|
770 |
-
prev_sample = (
|
771 |
-
alpha_prod_t_prev.sqrt() * denoised + beta_prod_t_prev.sqrt() * noise
|
772 |
-
)
|
773 |
-
else:
|
774 |
-
prev_sample = denoised
|
775 |
-
|
776 |
-
if not return_dict:
|
777 |
-
return (prev_sample, denoised)
|
778 |
-
|
779 |
-
return LCMSchedulerOutput(prev_sample=prev_sample, denoised=denoised)
|
780 |
-
|
781 |
-
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise
|
782 |
-
def add_noise(
|
783 |
-
self,
|
784 |
-
original_samples: torch.FloatTensor,
|
785 |
-
noise: torch.FloatTensor,
|
786 |
-
timesteps: torch.IntTensor,
|
787 |
-
) -> torch.FloatTensor:
|
788 |
-
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples
|
789 |
-
alphas_cumprod = self.alphas_cumprod.to(
|
790 |
-
device=original_samples.device, dtype=original_samples.dtype
|
791 |
-
)
|
792 |
-
timesteps = timesteps.to(original_samples.device)
|
793 |
-
|
794 |
-
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
|
795 |
-
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
|
796 |
-
while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
|
797 |
-
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
|
798 |
-
|
799 |
-
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
|
800 |
-
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
|
801 |
-
while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
|
802 |
-
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
|
803 |
-
|
804 |
-
noisy_samples = (
|
805 |
-
sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
|
806 |
-
)
|
807 |
-
return noisy_samples
|
808 |
-
|
809 |
-
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.get_velocity
|
810 |
-
def get_velocity(
|
811 |
-
self,
|
812 |
-
sample: torch.FloatTensor,
|
813 |
-
noise: torch.FloatTensor,
|
814 |
-
timesteps: torch.IntTensor,
|
815 |
-
) -> torch.FloatTensor:
|
816 |
-
# Make sure alphas_cumprod and timestep have same device and dtype as sample
|
817 |
-
alphas_cumprod = self.alphas_cumprod.to(
|
818 |
-
device=sample.device, dtype=sample.dtype
|
819 |
-
)
|
820 |
-
timesteps = timesteps.to(sample.device)
|
821 |
-
|
822 |
-
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
|
823 |
-
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
|
824 |
-
while len(sqrt_alpha_prod.shape) < len(sample.shape):
|
825 |
-
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
|
826 |
-
|
827 |
-
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
|
828 |
-
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
|
829 |
-
while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
|
830 |
-
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
|
831 |
-
|
832 |
-
velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
|
833 |
-
return velocity
|
834 |
-
|
835 |
-
def __len__(self):
|
836 |
-
return self.config.num_train_timesteps
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
diffusers==0.
|
2 |
transformers==4.34.1
|
3 |
gradio==3.50.2
|
4 |
--extra-index-url https://download.pytorch.org/whl/cu121
|
|
|
1 |
+
diffusers==0.22.1
|
2 |
transformers==4.34.1
|
3 |
gradio==3.50.2
|
4 |
--extra-index-url https://download.pytorch.org/whl/cu121
|