from transformers import CLIPFeatureExtractor from safety_checker import StableDiffusionSafetyChecker import torch from PIL import Image import gradio as gr from pathlib import Path device = "cuda" if torch.cuda.is_available() else "cpu" safety_checker = StableDiffusionSafetyChecker.from_pretrained( "CompVis/stable-diffusion-safety-checker" ).to(device) feature_extractor = CLIPFeatureExtractor.from_pretrained("openai/clip-vit-base-patch32") import gradio as gr def image_classifier(files): images = [Image.open(file).convert("RGB").resize((512, 512)) for file in files] safety_checker_input = feature_extractor(images, return_tensors="pt").to(device) has_nsfw_concepts = safety_checker( images=[images], clip_input=safety_checker_input.pixel_values.to(torch.float16) ) results = [ {"has_nsfw": nsfw, "file": Path(file).name} for (nsfw, file) in zip(has_nsfw_concepts, files) ] return {"results": results} demo = gr.Interface( fn=image_classifier, inputs=gr.File(file_count="multiple", file_types=["image"]), outputs="json", api_name="classify", ) demo.launch()