|
from email.policy import default |
|
import gradio as gr |
|
from transformers import DPTFeatureExtractor, DPTForDepthEstimation |
|
import torch |
|
import numpy as np |
|
from PIL import Image |
|
import open3d as o3d |
|
from pathlib import Path |
|
import os |
|
|
|
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large") |
|
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large") |
|
|
|
|
|
def process_image(image_path, voxel_s): |
|
voxel_s = max(voxel_s/500, 0.0001) |
|
image_path = Path(image_path) |
|
image_raw = Image.open(image_path) |
|
image = image_raw.resize( |
|
(800, int(800 * image_raw.size[1] / image_raw.size[0])), |
|
Image.Resampling.LANCZOS) |
|
|
|
|
|
encoding = feature_extractor(image, return_tensors="pt") |
|
|
|
|
|
with torch.no_grad(): |
|
outputs = model(**encoding) |
|
predicted_depth = outputs.predicted_depth |
|
|
|
|
|
prediction = torch.nn.functional.interpolate( |
|
predicted_depth.unsqueeze(1), |
|
size=image.size[::-1], |
|
mode="bicubic", |
|
align_corners=False, |
|
).squeeze() |
|
output = prediction.cpu().numpy() |
|
depth_image = (output * 255 / np.max(output)).astype('uint8') |
|
try: |
|
gltf_path = create_3d_voxels_obj( |
|
np.array(image), depth_image, image_path, voxel_s) |
|
img = Image.fromarray(depth_image) |
|
return [img, gltf_path, gltf_path] |
|
except Exception as e: |
|
print("Error reconstructing 3D model") |
|
raise Exception("Error reconstructing 3D model") |
|
|
|
|
|
def create_3d_voxels_obj(rgb_image, depth_image, image_path, voxel_s): |
|
depth_o3d = o3d.geometry.Image(depth_image) |
|
image_o3d = o3d.geometry.Image(rgb_image) |
|
rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth( |
|
image_o3d, depth_o3d, convert_rgb_to_intensity=False) |
|
w = int(depth_image.shape[1]) |
|
h = int(depth_image.shape[0]) |
|
|
|
camera_intrinsic = o3d.camera.PinholeCameraIntrinsic() |
|
camera_intrinsic.set_intrinsics(w, h, 500, 500, w/2, h/2) |
|
|
|
pcd = o3d.geometry.PointCloud.create_from_rgbd_image( |
|
rgbd_image, camera_intrinsic) |
|
|
|
print('normals') |
|
pcd.normals = o3d.utility.Vector3dVector( |
|
np.zeros((1, 3))) |
|
pcd.estimate_normals( |
|
search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.01, max_nn=30)) |
|
pcd.orient_normals_towards_camera_location( |
|
camera_location=np.array([0., 0., 1000.])) |
|
pcd.transform([[1, 0, 0, 0], |
|
[0, -1, 0, 0], |
|
[0, 0, -1, 0], |
|
[0, 0, 0, 1]]) |
|
pcd.transform([[-1, 0, 0, 0], |
|
[0, 1, 0, 0], |
|
[0, 0, 1, 0], |
|
[0, 0, 0, 1]]) |
|
|
|
print('voxels') |
|
|
|
|
|
voxel_size = round( |
|
max(pcd.get_max_bound()-pcd.get_min_bound())*voxel_s, 10) |
|
print("Voxel size", voxel_size, "voxel_s", voxel_s) |
|
voxel_grid = o3d.geometry.VoxelGrid.create_from_point_cloud( |
|
pcd, voxel_size=voxel_size) |
|
voxels = voxel_grid.get_voxels() |
|
|
|
vox_mesh = o3d.geometry.TriangleMesh() |
|
for v in voxels: |
|
cube = o3d.geometry.TriangleMesh.create_box(width=1, height=1, depth=1) |
|
cube.paint_uniform_color(v.color) |
|
cube.translate(v.grid_index, relative=False) |
|
vox_mesh += cube |
|
print(voxel_grid, vox_mesh) |
|
|
|
gltf_path = f'./{image_path.stem}.gltf' |
|
o3d.io.write_triangle_mesh(gltf_path, vox_mesh, write_triangle_uvs=True) |
|
return gltf_path |
|
|
|
|
|
title = "Demo: zero-shot depth estimation with DPT + 3D Voxels reconstruction" |
|
description = "This demo is a variation from the original <a href='https://huggingface.co/spaces/nielsr/dpt-depth-estimation' target='_blank'>DPT Demo</a>. It uses the DPT model to predict the depth of an image and then reconstruct the 3D model as voxels." |
|
examples = [["examples/" + img, 10] for img in os.listdir("examples/")] |
|
|
|
iface = gr.Interface(fn=process_image, |
|
inputs=[ |
|
gr.Image( |
|
type="filepath", label="Input Image"), |
|
gr.Slider(value=10, minimum=5, maximum=100, step=1, label="Voxel Size",) |
|
], |
|
outputs=[ |
|
gr.Image(label="predicted depth", type="pil"), |
|
gr.Model3D(label="3d mesh reconstruction", clear_color=[ |
|
1.0, 1.0, 1.0, 1.0]), |
|
gr.File(label="3d gLTF") |
|
], |
|
title=title, |
|
description=description, |
|
examples=examples, |
|
allow_flagging="never", |
|
cache_examples=False) |
|
iface.launch(debug=True) |
|
|