Spaces:
Runtime error
Runtime error
controlnet
Browse files- app.py +2 -2
- app_init.py +26 -42
- frontend/package-lock.json +8 -0
- frontend/package.json +4 -1
- frontend/src/lib/components/Button.svelte +2 -1
- frontend/src/lib/components/Checkbox.svelte +10 -0
- frontend/src/lib/components/ImagePlayer.svelte +10 -4
- frontend/src/lib/components/InputRange.svelte +27 -6
- frontend/src/lib/components/PipelineOptions.svelte +12 -7
- frontend/src/lib/components/SeedInput.svelte +1 -1
- frontend/src/lib/components/VideoInput.svelte +70 -1
- frontend/src/lib/lcmLive.ts +99 -0
- frontend/src/lib/mediaStream.ts +93 -0
- frontend/src/lib/types.ts +2 -0
- frontend/src/lib/utils.ts +145 -0
- frontend/src/routes/+page.svelte +74 -13
- latent_consistency_controlnet.py +0 -1100
- pipelines/controlnet.py +183 -58
- pipelines/txt2img.py +14 -14
- canny_gpu.py → pipelines/utils/canny_gpu.py +0 -0
- requirements.txt +1 -1
- user_queue.py +19 -8
app.py
CHANGED
@@ -3,7 +3,7 @@ from fastapi import FastAPI
|
|
3 |
from config import args
|
4 |
from device import device, torch_dtype
|
5 |
from app_init import init_app
|
6 |
-
from user_queue import
|
7 |
from util import get_pipeline_class
|
8 |
|
9 |
|
@@ -11,4 +11,4 @@ app = FastAPI()
|
|
11 |
|
12 |
pipeline_class = get_pipeline_class(args.pipeline)
|
13 |
pipeline = pipeline_class(args, device, torch_dtype)
|
14 |
-
init_app(app,
|
|
|
3 |
from config import args
|
4 |
from device import device, torch_dtype
|
5 |
from app_init import init_app
|
6 |
+
from user_queue import user_data_events
|
7 |
from util import get_pipeline_class
|
8 |
|
9 |
|
|
|
11 |
|
12 |
pipeline_class = get_pipeline_class(args.pipeline)
|
13 |
pipeline = pipeline_class(args, device, torch_dtype)
|
14 |
+
init_app(app, user_data_events, args, pipeline)
|
app_init.py
CHANGED
@@ -6,15 +6,16 @@ from fastapi.staticfiles import StaticFiles
|
|
6 |
import logging
|
7 |
import traceback
|
8 |
from config import Args
|
9 |
-
from user_queue import
|
10 |
import uuid
|
11 |
-
import
|
12 |
import time
|
13 |
from PIL import Image
|
14 |
import io
|
|
|
15 |
|
16 |
|
17 |
-
def init_app(app: FastAPI,
|
18 |
app.add_middleware(
|
19 |
CORSMiddleware,
|
20 |
allow_origins=["*"],
|
@@ -27,19 +28,20 @@ def init_app(app: FastAPI, user_queue_map: UserQueueDict, args: Args, pipeline):
|
|
27 |
@app.websocket("/ws")
|
28 |
async def websocket_endpoint(websocket: WebSocket):
|
29 |
await websocket.accept()
|
30 |
-
if args.max_queue_size > 0 and len(
|
31 |
print("Server is full")
|
32 |
await websocket.send_json({"status": "error", "message": "Server is full"})
|
33 |
await websocket.close()
|
34 |
return
|
35 |
|
36 |
try:
|
37 |
-
uid = uuid.uuid4()
|
38 |
print(f"New user connected: {uid}")
|
39 |
await websocket.send_json(
|
40 |
{"status": "success", "message": "Connected", "userId": uid}
|
41 |
)
|
42 |
-
|
|
|
43 |
await websocket.send_json(
|
44 |
{"status": "start", "message": "Start Streaming", "userId": uid}
|
45 |
)
|
@@ -49,40 +51,27 @@ def init_app(app: FastAPI, user_queue_map: UserQueueDict, args: Args, pipeline):
|
|
49 |
traceback.print_exc()
|
50 |
finally:
|
51 |
print(f"User disconnected: {uid}")
|
52 |
-
|
53 |
-
queue = queue_value.get("queue", None)
|
54 |
-
if queue:
|
55 |
-
while not queue.empty():
|
56 |
-
try:
|
57 |
-
queue.get_nowait()
|
58 |
-
except asyncio.QueueEmpty:
|
59 |
-
continue
|
60 |
|
61 |
@app.get("/queue_size")
|
62 |
async def get_queue_size():
|
63 |
-
queue_size = len(
|
64 |
return JSONResponse({"queue_size": queue_size})
|
65 |
|
66 |
@app.get("/stream/{user_id}")
|
67 |
async def stream(user_id: uuid.UUID):
|
68 |
-
uid = user_id
|
69 |
try:
|
70 |
-
user_queue = user_queue_map[uid]
|
71 |
-
queue = user_queue["queue"]
|
72 |
|
73 |
async def generate():
|
74 |
last_prompt: str = None
|
75 |
while True:
|
76 |
-
data = await
|
77 |
-
input_image = data["image"]
|
78 |
params = data["params"]
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
image = pipeline.predict(
|
83 |
-
input_image,
|
84 |
-
params,
|
85 |
-
)
|
86 |
if image is None:
|
87 |
continue
|
88 |
frame_data = io.BytesIO()
|
@@ -91,36 +80,31 @@ def init_app(app: FastAPI, user_queue_map: UserQueueDict, args: Args, pipeline):
|
|
91 |
if frame_data is not None and len(frame_data) > 0:
|
92 |
yield b"--frame\r\nContent-Type: image/jpeg\r\n\r\n" + frame_data + b"\r\n"
|
93 |
|
94 |
-
await
|
95 |
|
96 |
return StreamingResponse(
|
97 |
generate(), media_type="multipart/x-mixed-replace;boundary=frame"
|
98 |
)
|
99 |
except Exception as e:
|
100 |
-
logging.error(f"Streaming Error: {e}, {
|
101 |
traceback.print_exc()
|
102 |
return HTTPException(status_code=404, detail="User not found")
|
103 |
|
104 |
async def handle_websocket_data(websocket: WebSocket, user_id: uuid.UUID):
|
105 |
-
uid = user_id
|
106 |
-
|
107 |
-
queue = user_queue["queue"]
|
108 |
-
if not queue:
|
109 |
return HTTPException(status_code=404, detail="User not found")
|
110 |
last_time = time.time()
|
111 |
try:
|
112 |
while True:
|
113 |
-
data = await websocket.receive_bytes()
|
114 |
params = await websocket.receive_json()
|
115 |
params = pipeline.InputParams(**params)
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
continue
|
123 |
-
await queue.put({"image": pil_image, "params": params})
|
124 |
if args.timeout > 0 and time.time() - last_time > args.timeout:
|
125 |
await websocket.send_json(
|
126 |
{
|
|
|
6 |
import logging
|
7 |
import traceback
|
8 |
from config import Args
|
9 |
+
from user_queue import UserDataEventMap, UserDataEvent
|
10 |
import uuid
|
11 |
+
from asyncio import Event, sleep
|
12 |
import time
|
13 |
from PIL import Image
|
14 |
import io
|
15 |
+
from types import SimpleNamespace
|
16 |
|
17 |
|
18 |
+
def init_app(app: FastAPI, user_data_events: UserDataEventMap, args: Args, pipeline):
|
19 |
app.add_middleware(
|
20 |
CORSMiddleware,
|
21 |
allow_origins=["*"],
|
|
|
28 |
@app.websocket("/ws")
|
29 |
async def websocket_endpoint(websocket: WebSocket):
|
30 |
await websocket.accept()
|
31 |
+
if args.max_queue_size > 0 and len(user_data_events) >= args.max_queue_size:
|
32 |
print("Server is full")
|
33 |
await websocket.send_json({"status": "error", "message": "Server is full"})
|
34 |
await websocket.close()
|
35 |
return
|
36 |
|
37 |
try:
|
38 |
+
uid = str(uuid.uuid4())
|
39 |
print(f"New user connected: {uid}")
|
40 |
await websocket.send_json(
|
41 |
{"status": "success", "message": "Connected", "userId": uid}
|
42 |
)
|
43 |
+
user_data_events[uid] = UserDataEvent()
|
44 |
+
print(f"User data events: {user_data_events}")
|
45 |
await websocket.send_json(
|
46 |
{"status": "start", "message": "Start Streaming", "userId": uid}
|
47 |
)
|
|
|
51 |
traceback.print_exc()
|
52 |
finally:
|
53 |
print(f"User disconnected: {uid}")
|
54 |
+
del user_data_events[uid]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
@app.get("/queue_size")
|
57 |
async def get_queue_size():
|
58 |
+
queue_size = len(user_data_events)
|
59 |
return JSONResponse({"queue_size": queue_size})
|
60 |
|
61 |
@app.get("/stream/{user_id}")
|
62 |
async def stream(user_id: uuid.UUID):
|
63 |
+
uid = str(user_id)
|
64 |
try:
|
|
|
|
|
65 |
|
66 |
async def generate():
|
67 |
last_prompt: str = None
|
68 |
while True:
|
69 |
+
data = await user_data_events[uid].wait_for_data()
|
|
|
70 |
params = data["params"]
|
71 |
+
# input_image = data["image"]
|
72 |
+
# if input_image is None:
|
73 |
+
# continue
|
74 |
+
image = pipeline.predict(params)
|
|
|
|
|
|
|
75 |
if image is None:
|
76 |
continue
|
77 |
frame_data = io.BytesIO()
|
|
|
80 |
if frame_data is not None and len(frame_data) > 0:
|
81 |
yield b"--frame\r\nContent-Type: image/jpeg\r\n\r\n" + frame_data + b"\r\n"
|
82 |
|
83 |
+
await sleep(1.0 / 120.0)
|
84 |
|
85 |
return StreamingResponse(
|
86 |
generate(), media_type="multipart/x-mixed-replace;boundary=frame"
|
87 |
)
|
88 |
except Exception as e:
|
89 |
+
logging.error(f"Streaming Error: {e}, {user_data_events}")
|
90 |
traceback.print_exc()
|
91 |
return HTTPException(status_code=404, detail="User not found")
|
92 |
|
93 |
async def handle_websocket_data(websocket: WebSocket, user_id: uuid.UUID):
|
94 |
+
uid = str(user_id)
|
95 |
+
if uid not in user_data_events:
|
|
|
|
|
96 |
return HTTPException(status_code=404, detail="User not found")
|
97 |
last_time = time.time()
|
98 |
try:
|
99 |
while True:
|
|
|
100 |
params = await websocket.receive_json()
|
101 |
params = pipeline.InputParams(**params)
|
102 |
+
params = SimpleNamespace(**params.dict())
|
103 |
+
if hasattr(params, "image"):
|
104 |
+
image_data = await websocket.receive_bytes()
|
105 |
+
pil_image = Image.open(io.BytesIO(image_data))
|
106 |
+
params.image = pil_image
|
107 |
+
user_data_events[uid].update_data({"params": params})
|
|
|
|
|
108 |
if args.timeout > 0 and time.time() - last_time > args.timeout:
|
109 |
await websocket.send_json(
|
110 |
{
|
frontend/package-lock.json
CHANGED
@@ -7,6 +7,9 @@
|
|
7 |
"": {
|
8 |
"name": "frontend",
|
9 |
"version": "0.0.1",
|
|
|
|
|
|
|
10 |
"devDependencies": {
|
11 |
"@sveltejs/adapter-auto": "^2.0.0",
|
12 |
"@sveltejs/adapter-static": "^2.0.3",
|
@@ -3035,6 +3038,11 @@
|
|
3035 |
"queue-microtask": "^1.2.2"
|
3036 |
}
|
3037 |
},
|
|
|
|
|
|
|
|
|
|
|
3038 |
"node_modules/sade": {
|
3039 |
"version": "1.8.1",
|
3040 |
"resolved": "https://registry.npmjs.org/sade/-/sade-1.8.1.tgz",
|
|
|
7 |
"": {
|
8 |
"name": "frontend",
|
9 |
"version": "0.0.1",
|
10 |
+
"dependencies": {
|
11 |
+
"rvfc-polyfill": "^1.0.7"
|
12 |
+
},
|
13 |
"devDependencies": {
|
14 |
"@sveltejs/adapter-auto": "^2.0.0",
|
15 |
"@sveltejs/adapter-static": "^2.0.3",
|
|
|
3038 |
"queue-microtask": "^1.2.2"
|
3039 |
}
|
3040 |
},
|
3041 |
+
"node_modules/rvfc-polyfill": {
|
3042 |
+
"version": "1.0.7",
|
3043 |
+
"resolved": "https://registry.npmjs.org/rvfc-polyfill/-/rvfc-polyfill-1.0.7.tgz",
|
3044 |
+
"integrity": "sha512-seBl7J1J3/k0LuzW2T9fG6JIOpni5AbU+/87LA+zTYKgTVhsfShmS8K/yOo1eeEjGJHnAdkVAUUM+PEjN9Mpkw=="
|
3045 |
+
},
|
3046 |
"node_modules/sade": {
|
3047 |
"version": "1.8.1",
|
3048 |
"resolved": "https://registry.npmjs.org/sade/-/sade-1.8.1.tgz",
|
frontend/package.json
CHANGED
@@ -33,5 +33,8 @@
|
|
33 |
"typescript": "^5.0.0",
|
34 |
"vite": "^4.4.2"
|
35 |
},
|
36 |
-
"type": "module"
|
|
|
|
|
|
|
37 |
}
|
|
|
33 |
"typescript": "^5.0.0",
|
34 |
"vite": "^4.4.2"
|
35 |
},
|
36 |
+
"type": "module",
|
37 |
+
"dependencies": {
|
38 |
+
"rvfc-polyfill": "^1.0.7"
|
39 |
+
}
|
40 |
}
|
frontend/src/lib/components/Button.svelte
CHANGED
@@ -1,8 +1,9 @@
|
|
1 |
<script lang="ts">
|
2 |
export let classList: string = '';
|
|
|
3 |
</script>
|
4 |
|
5 |
-
<button class="button {classList}" on:click>
|
6 |
<slot />
|
7 |
</button>
|
8 |
|
|
|
1 |
<script lang="ts">
|
2 |
export let classList: string = '';
|
3 |
+
export let disabled: boolean = false;
|
4 |
</script>
|
5 |
|
6 |
+
<button class="button {classList}" on:click {disabled}>
|
7 |
<slot />
|
8 |
</button>
|
9 |
|
frontend/src/lib/components/Checkbox.svelte
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<script lang="ts">
|
2 |
+
import type { FieldProps } from '$lib/types';
|
3 |
+
export let value = false;
|
4 |
+
export let params: FieldProps;
|
5 |
+
</script>
|
6 |
+
|
7 |
+
<div class="grid max-w-md grid-cols-4 items-center justify-items-start gap-3">
|
8 |
+
<label class="text-sm font-medium" for={params.id}>{params?.title}</label>
|
9 |
+
<input bind:checked={value} type="checkbox" id={params.id} class="cursor-pointer" />
|
10 |
+
</div>
|
frontend/src/lib/components/ImagePlayer.svelte
CHANGED
@@ -1,12 +1,18 @@
|
|
1 |
<script lang="ts">
|
|
|
|
|
|
|
|
|
|
|
2 |
</script>
|
3 |
|
4 |
<div class="relative overflow-hidden rounded-lg border border-slate-300">
|
5 |
<!-- svelte-ignore a11y-missing-attribute -->
|
6 |
-
|
7 |
-
class="aspect-square w-full rounded-lg"
|
8 |
-
|
9 |
-
|
|
|
10 |
<div class="absolute left-0 top-0 aspect-square w-1/4">
|
11 |
<div class="relative z-10 aspect-square w-full object-cover">
|
12 |
<slot />
|
|
|
1 |
<script lang="ts">
|
2 |
+
import { isLCMRunning, lcmLiveState, lcmLiveActions } from '$lib/lcmLive';
|
3 |
+
import { onFrameChangeStore } from '$lib/mediaStream';
|
4 |
+
import { PUBLIC_BASE_URL } from '$env/static/public';
|
5 |
+
|
6 |
+
$: streamId = $lcmLiveState.streamId;
|
7 |
</script>
|
8 |
|
9 |
<div class="relative overflow-hidden rounded-lg border border-slate-300">
|
10 |
<!-- svelte-ignore a11y-missing-attribute -->
|
11 |
+
{#if $isLCMRunning}
|
12 |
+
<img class="aspect-square w-full rounded-lg" src={PUBLIC_BASE_URL + '/stream/' + streamId} />
|
13 |
+
{:else}
|
14 |
+
<div class="aspect-square w-full rounded-lg" />
|
15 |
+
{/if}
|
16 |
<div class="absolute left-0 top-0 aspect-square w-1/4">
|
17 |
<div class="relative z-10 aspect-square w-full object-cover">
|
18 |
<slot />
|
frontend/src/lib/components/InputRange.svelte
CHANGED
@@ -8,14 +8,14 @@
|
|
8 |
});
|
9 |
</script>
|
10 |
|
11 |
-
<div class="grid
|
12 |
-
<label class="text-sm font-medium" for=
|
13 |
<input
|
14 |
-
class="col-span-2"
|
15 |
bind:value
|
16 |
type="range"
|
17 |
-
id=
|
18 |
-
name=
|
19 |
min={params?.min}
|
20 |
max={params?.max}
|
21 |
step={params?.step ?? 1}
|
@@ -24,6 +24,27 @@
|
|
24 |
type="number"
|
25 |
step={params?.step ?? 1}
|
26 |
bind:value
|
27 |
-
class="rounded-md border
|
28 |
/>
|
29 |
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
});
|
9 |
</script>
|
10 |
|
11 |
+
<div class="grid grid-cols-4 items-center gap-3">
|
12 |
+
<label class="text-sm font-medium" for={params.id}>{params?.title}</label>
|
13 |
<input
|
14 |
+
class="col-span-2 h-2 w-full cursor-pointer appearance-none rounded-lg bg-gray-300 dark:bg-gray-500"
|
15 |
bind:value
|
16 |
type="range"
|
17 |
+
id={params.id}
|
18 |
+
name={params.id}
|
19 |
min={params?.min}
|
20 |
max={params?.max}
|
21 |
step={params?.step ?? 1}
|
|
|
24 |
type="number"
|
25 |
step={params?.step ?? 1}
|
26 |
bind:value
|
27 |
+
class="rounded-md border px-1 py-1 text-center text-xs font-bold dark:text-black"
|
28 |
/>
|
29 |
</div>
|
30 |
+
<!--
|
31 |
+
<style lang="postcss" scoped>
|
32 |
+
input[type='range']::-webkit-slider-runnable-track {
|
33 |
+
@apply h-2 cursor-pointer rounded-lg dark:bg-gray-50;
|
34 |
+
}
|
35 |
+
input[type='range']::-webkit-slider-thumb {
|
36 |
+
@apply cursor-pointer rounded-lg dark:bg-gray-50;
|
37 |
+
}
|
38 |
+
input[type='range']::-moz-range-track {
|
39 |
+
@apply cursor-pointer rounded-lg dark:bg-gray-50;
|
40 |
+
}
|
41 |
+
input[type='range']::-moz-range-thumb {
|
42 |
+
@apply cursor-pointer rounded-lg dark:bg-gray-50;
|
43 |
+
}
|
44 |
+
input[type='range']::-ms-track {
|
45 |
+
@apply cursor-pointer rounded-lg dark:bg-gray-50;
|
46 |
+
}
|
47 |
+
input[type='range']::-ms-thumb {
|
48 |
+
@apply cursor-pointer rounded-lg dark:bg-gray-50;
|
49 |
+
}
|
50 |
+
</style> -->
|
frontend/src/lib/components/PipelineOptions.svelte
CHANGED
@@ -5,6 +5,7 @@
|
|
5 |
import InputRange from './InputRange.svelte';
|
6 |
import SeedInput from './SeedInput.svelte';
|
7 |
import TextArea from './TextArea.svelte';
|
|
|
8 |
|
9 |
export let pipelineParams: FieldProps[];
|
10 |
export let pipelineValues = {} as any;
|
@@ -17,11 +18,13 @@
|
|
17 |
{#if featuredOptions}
|
18 |
{#each featuredOptions as params}
|
19 |
{#if params.field === FieldType.range}
|
20 |
-
<InputRange {params} bind:value={pipelineValues[params.
|
21 |
{:else if params.field === FieldType.seed}
|
22 |
-
<SeedInput bind:value={pipelineValues[params.
|
23 |
{:else if params.field === FieldType.textarea}
|
24 |
-
<TextArea {params} bind:value={pipelineValues[params.
|
|
|
|
|
25 |
{/if}
|
26 |
{/each}
|
27 |
{/if}
|
@@ -29,15 +32,17 @@
|
|
29 |
|
30 |
<details open>
|
31 |
<summary class="cursor-pointer font-medium">Advanced Options</summary>
|
32 |
-
<div class="
|
33 |
{#if advanceOptions}
|
34 |
{#each advanceOptions as params}
|
35 |
{#if params.field === FieldType.range}
|
36 |
-
<InputRange {params} bind:value={pipelineValues[params.
|
37 |
{:else if params.field === FieldType.seed}
|
38 |
-
<SeedInput bind:value={pipelineValues[params.
|
39 |
{:else if params.field === FieldType.textarea}
|
40 |
-
<TextArea {params} bind:value={pipelineValues[params.
|
|
|
|
|
41 |
{/if}
|
42 |
{/each}
|
43 |
{/if}
|
|
|
5 |
import InputRange from './InputRange.svelte';
|
6 |
import SeedInput from './SeedInput.svelte';
|
7 |
import TextArea from './TextArea.svelte';
|
8 |
+
import Checkbox from './Checkbox.svelte';
|
9 |
|
10 |
export let pipelineParams: FieldProps[];
|
11 |
export let pipelineValues = {} as any;
|
|
|
18 |
{#if featuredOptions}
|
19 |
{#each featuredOptions as params}
|
20 |
{#if params.field === FieldType.range}
|
21 |
+
<InputRange {params} bind:value={pipelineValues[params.id]}></InputRange>
|
22 |
{:else if params.field === FieldType.seed}
|
23 |
+
<SeedInput bind:value={pipelineValues[params.id]}></SeedInput>
|
24 |
{:else if params.field === FieldType.textarea}
|
25 |
+
<TextArea {params} bind:value={pipelineValues[params.id]}></TextArea>
|
26 |
+
{:else if params.field === FieldType.checkbox}
|
27 |
+
<Checkbox {params} bind:value={pipelineValues[params.id]}></Checkbox>
|
28 |
{/if}
|
29 |
{/each}
|
30 |
{/if}
|
|
|
32 |
|
33 |
<details open>
|
34 |
<summary class="cursor-pointer font-medium">Advanced Options</summary>
|
35 |
+
<div class="grid grid-cols-1 items-center gap-3 sm:grid-cols-2">
|
36 |
{#if advanceOptions}
|
37 |
{#each advanceOptions as params}
|
38 |
{#if params.field === FieldType.range}
|
39 |
+
<InputRange {params} bind:value={pipelineValues[params.id]}></InputRange>
|
40 |
{:else if params.field === FieldType.seed}
|
41 |
+
<SeedInput bind:value={pipelineValues[params.id]}></SeedInput>
|
42 |
{:else if params.field === FieldType.textarea}
|
43 |
+
<TextArea {params} bind:value={pipelineValues[params.id]}></TextArea>
|
44 |
+
{:else if params.field === FieldType.checkbox}
|
45 |
+
<Checkbox {params} bind:value={pipelineValues[params.id]}></Checkbox>
|
46 |
{/if}
|
47 |
{/each}
|
48 |
{/if}
|
frontend/src/lib/components/SeedInput.svelte
CHANGED
@@ -16,5 +16,5 @@
|
|
16 |
name="seed"
|
17 |
class="col-span-2 rounded-md border border-gray-700 p-2 text-right font-light dark:text-black"
|
18 |
/>
|
19 |
-
<Button on:click={randomize}>
|
20 |
</div>
|
|
|
16 |
name="seed"
|
17 |
class="col-span-2 rounded-md border border-gray-700 p-2 text-right font-light dark:text-black"
|
18 |
/>
|
19 |
+
<Button on:click={randomize}>Rand</Button>
|
20 |
</div>
|
frontend/src/lib/components/VideoInput.svelte
CHANGED
@@ -1,4 +1,73 @@
|
|
1 |
<script lang="ts">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
</script>
|
3 |
|
4 |
-
<video
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
<script lang="ts">
|
2 |
+
import 'rvfc-polyfill';
|
3 |
+
import { onMount, onDestroy } from 'svelte';
|
4 |
+
import {
|
5 |
+
mediaStreamState,
|
6 |
+
mediaStreamActions,
|
7 |
+
isMediaStreaming,
|
8 |
+
MediaStreamStatus,
|
9 |
+
onFrameChangeStore
|
10 |
+
} from '$lib/mediaStream';
|
11 |
+
|
12 |
+
$: mediaStream = $mediaStreamState.mediaStream;
|
13 |
+
|
14 |
+
let videoEl: HTMLVideoElement;
|
15 |
+
let videoFrameCallbackId: number;
|
16 |
+
const WIDTH = 512;
|
17 |
+
const HEIGHT = 512;
|
18 |
+
|
19 |
+
onDestroy(() => {
|
20 |
+
if (videoFrameCallbackId) videoEl.cancelVideoFrameCallback(videoFrameCallbackId);
|
21 |
+
});
|
22 |
+
|
23 |
+
function srcObject(node: HTMLVideoElement, stream: MediaStream) {
|
24 |
+
node.srcObject = stream;
|
25 |
+
return {
|
26 |
+
update(newStream: MediaStream) {
|
27 |
+
if (node.srcObject != newStream) {
|
28 |
+
node.srcObject = newStream;
|
29 |
+
}
|
30 |
+
}
|
31 |
+
};
|
32 |
+
}
|
33 |
+
async function onFrameChange(now: DOMHighResTimeStamp, metadata: VideoFrameCallbackMetadata) {
|
34 |
+
const blob = await grapBlobImg();
|
35 |
+
onFrameChangeStore.set({ now, metadata, blob });
|
36 |
+
videoFrameCallbackId = videoEl.requestVideoFrameCallback(onFrameChange);
|
37 |
+
}
|
38 |
+
|
39 |
+
$: if ($isMediaStreaming == MediaStreamStatus.CONNECTED) {
|
40 |
+
videoFrameCallbackId = videoEl.requestVideoFrameCallback(onFrameChange);
|
41 |
+
}
|
42 |
+
async function grapBlobImg() {
|
43 |
+
const canvas = new OffscreenCanvas(WIDTH, HEIGHT);
|
44 |
+
const videoW = videoEl.videoWidth;
|
45 |
+
const videoH = videoEl.videoHeight;
|
46 |
+
const aspectRatio = WIDTH / HEIGHT;
|
47 |
+
|
48 |
+
const ctx = canvas.getContext('2d') as OffscreenCanvasRenderingContext2D;
|
49 |
+
ctx.drawImage(
|
50 |
+
videoEl,
|
51 |
+
videoW / 2 - (videoH * aspectRatio) / 2,
|
52 |
+
0,
|
53 |
+
videoH * aspectRatio,
|
54 |
+
videoH,
|
55 |
+
0,
|
56 |
+
0,
|
57 |
+
WIDTH,
|
58 |
+
HEIGHT
|
59 |
+
);
|
60 |
+
const blob = await canvas.convertToBlob({ type: 'image/jpeg', quality: 1 });
|
61 |
+
return blob;
|
62 |
+
}
|
63 |
</script>
|
64 |
|
65 |
+
<video
|
66 |
+
class="aspect-square w-full object-cover"
|
67 |
+
bind:this={videoEl}
|
68 |
+
playsinline
|
69 |
+
autoplay
|
70 |
+
muted
|
71 |
+
loop
|
72 |
+
use:srcObject={mediaStream}
|
73 |
+
></video>
|
frontend/src/lib/lcmLive.ts
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import { writable } from 'svelte/store';
|
2 |
+
import { PUBLIC_BASE_URL, PUBLIC_WSS_URL } from '$env/static/public';
|
3 |
+
|
4 |
+
export const isStreaming = writable(false);
|
5 |
+
export const isLCMRunning = writable(false);
|
6 |
+
|
7 |
+
|
8 |
+
export enum LCMLiveStatus {
|
9 |
+
INIT = "init",
|
10 |
+
CONNECTED = "connected",
|
11 |
+
DISCONNECTED = "disconnected",
|
12 |
+
}
|
13 |
+
|
14 |
+
interface lcmLive {
|
15 |
+
streamId: string | null;
|
16 |
+
status: LCMLiveStatus
|
17 |
+
}
|
18 |
+
|
19 |
+
const initialState: lcmLive = {
|
20 |
+
streamId: null,
|
21 |
+
status: LCMLiveStatus.INIT
|
22 |
+
};
|
23 |
+
|
24 |
+
export const lcmLiveState = writable(initialState);
|
25 |
+
|
26 |
+
let websocket: WebSocket | null = null;
|
27 |
+
export const lcmLiveActions = {
|
28 |
+
async start() {
|
29 |
+
|
30 |
+
isLCMRunning.set(true);
|
31 |
+
try {
|
32 |
+
const websocketURL = PUBLIC_WSS_URL ? PUBLIC_WSS_URL : `${window.location.protocol === "https:" ? "wss" : "ws"
|
33 |
+
}:${window.location.host}/ws`;
|
34 |
+
|
35 |
+
websocket = new WebSocket(websocketURL);
|
36 |
+
websocket.onopen = () => {
|
37 |
+
console.log("Connected to websocket");
|
38 |
+
};
|
39 |
+
websocket.onclose = () => {
|
40 |
+
lcmLiveState.update((state) => ({
|
41 |
+
...state,
|
42 |
+
status: LCMLiveStatus.DISCONNECTED
|
43 |
+
}));
|
44 |
+
console.log("Disconnected from websocket");
|
45 |
+
isLCMRunning.set(false);
|
46 |
+
};
|
47 |
+
websocket.onerror = (err) => {
|
48 |
+
console.error(err);
|
49 |
+
};
|
50 |
+
websocket.onmessage = (event) => {
|
51 |
+
const data = JSON.parse(event.data);
|
52 |
+
console.log("WS: ", data);
|
53 |
+
switch (data.status) {
|
54 |
+
case "success":
|
55 |
+
break;
|
56 |
+
case "start":
|
57 |
+
const streamId = data.userId;
|
58 |
+
lcmLiveState.update((state) => ({
|
59 |
+
...state,
|
60 |
+
status: LCMLiveStatus.CONNECTED,
|
61 |
+
streamId: streamId,
|
62 |
+
}));
|
63 |
+
break;
|
64 |
+
case "timeout":
|
65 |
+
console.log("timeout");
|
66 |
+
case "error":
|
67 |
+
console.log(data.message);
|
68 |
+
isLCMRunning.set(false);
|
69 |
+
}
|
70 |
+
};
|
71 |
+
lcmLiveState.update((state) => ({
|
72 |
+
...state,
|
73 |
+
}));
|
74 |
+
} catch (err) {
|
75 |
+
console.error(err);
|
76 |
+
isLCMRunning.set(false);
|
77 |
+
}
|
78 |
+
},
|
79 |
+
send(data: Blob | { [key: string]: any }) {
|
80 |
+
if (websocket && websocket.readyState === WebSocket.OPEN) {
|
81 |
+
if (data instanceof Blob) {
|
82 |
+
websocket.send(data);
|
83 |
+
} else {
|
84 |
+
websocket.send(JSON.stringify(data));
|
85 |
+
}
|
86 |
+
} else {
|
87 |
+
console.log("WebSocket not connected");
|
88 |
+
}
|
89 |
+
},
|
90 |
+
async stop() {
|
91 |
+
|
92 |
+
if (websocket) {
|
93 |
+
websocket.close();
|
94 |
+
}
|
95 |
+
websocket = null;
|
96 |
+
lcmLiveState.set({ status: LCMLiveStatus.DISCONNECTED, streamId: null });
|
97 |
+
isLCMRunning.set(false)
|
98 |
+
},
|
99 |
+
};
|
frontend/src/lib/mediaStream.ts
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import { writable, type Writable } from 'svelte/store';
|
2 |
+
|
3 |
+
export enum MediaStreamStatus {
|
4 |
+
INIT = "init",
|
5 |
+
CONNECTED = "connected",
|
6 |
+
DISCONNECTED = "disconnected",
|
7 |
+
}
|
8 |
+
export const onFrameChangeStore: Writable<{ now: Number, metadata: VideoFrameCallbackMetadata, blob: Blob }> = writable();
|
9 |
+
export const isMediaStreaming = writable(MediaStreamStatus.INIT);
|
10 |
+
|
11 |
+
interface mediaStream {
|
12 |
+
mediaStream: MediaStream | null;
|
13 |
+
status: MediaStreamStatus
|
14 |
+
devices: MediaDeviceInfo[];
|
15 |
+
}
|
16 |
+
|
17 |
+
const initialState: mediaStream = {
|
18 |
+
mediaStream: null,
|
19 |
+
status: MediaStreamStatus.INIT,
|
20 |
+
devices: [],
|
21 |
+
};
|
22 |
+
|
23 |
+
export const mediaStreamState = writable(initialState);
|
24 |
+
|
25 |
+
export const mediaStreamActions = {
|
26 |
+
async enumerateDevices() {
|
27 |
+
console.log("Enumerating devices");
|
28 |
+
await navigator.mediaDevices.enumerateDevices()
|
29 |
+
.then(devices => {
|
30 |
+
const cameras = devices.filter(device => device.kind === 'videoinput');
|
31 |
+
console.log("Cameras: ", cameras);
|
32 |
+
mediaStreamState.update((state) => ({
|
33 |
+
...state,
|
34 |
+
devices: cameras,
|
35 |
+
}));
|
36 |
+
})
|
37 |
+
.catch(err => {
|
38 |
+
console.error(err);
|
39 |
+
});
|
40 |
+
},
|
41 |
+
async start(mediaDevicedID?: string) {
|
42 |
+
const constraints = {
|
43 |
+
audio: false,
|
44 |
+
video: {
|
45 |
+
width: 1024, height: 1024, deviceId: mediaDevicedID
|
46 |
+
}
|
47 |
+
};
|
48 |
+
|
49 |
+
await navigator.mediaDevices
|
50 |
+
.getUserMedia(constraints)
|
51 |
+
.then((mediaStream) => {
|
52 |
+
mediaStreamState.update((state) => ({
|
53 |
+
...state,
|
54 |
+
mediaStream: mediaStream,
|
55 |
+
status: MediaStreamStatus.CONNECTED,
|
56 |
+
}));
|
57 |
+
isMediaStreaming.set(MediaStreamStatus.CONNECTED);
|
58 |
+
})
|
59 |
+
.catch((err) => {
|
60 |
+
console.error(`${err.name}: ${err.message}`);
|
61 |
+
isMediaStreaming.set(MediaStreamStatus.DISCONNECTED);
|
62 |
+
});
|
63 |
+
},
|
64 |
+
async switchCamera(mediaDevicedID: string) {
|
65 |
+
const constraints = {
|
66 |
+
audio: false,
|
67 |
+
video: { width: 1024, height: 1024, deviceId: mediaDevicedID }
|
68 |
+
};
|
69 |
+
await navigator.mediaDevices
|
70 |
+
.getUserMedia(constraints)
|
71 |
+
.then((mediaStream) => {
|
72 |
+
mediaStreamState.update((state) => ({
|
73 |
+
...state,
|
74 |
+
mediaStream: mediaStream,
|
75 |
+
status: MediaStreamStatus.CONNECTED,
|
76 |
+
}));
|
77 |
+
})
|
78 |
+
.catch((err) => {
|
79 |
+
console.error(`${err.name}: ${err.message}`);
|
80 |
+
});
|
81 |
+
},
|
82 |
+
async stop() {
|
83 |
+
navigator.mediaDevices.getUserMedia({ video: true }).then((mediaStream) => {
|
84 |
+
mediaStream.getTracks().forEach((track) => track.stop());
|
85 |
+
});
|
86 |
+
mediaStreamState.update((state) => ({
|
87 |
+
...state,
|
88 |
+
mediaStream: null,
|
89 |
+
status: MediaStreamStatus.DISCONNECTED,
|
90 |
+
}));
|
91 |
+
isMediaStreaming.set(MediaStreamStatus.DISCONNECTED);
|
92 |
+
},
|
93 |
+
};
|
frontend/src/lib/types.ts
CHANGED
@@ -2,6 +2,7 @@ export const enum FieldType {
|
|
2 |
range = "range",
|
3 |
seed = "seed",
|
4 |
textarea = "textarea",
|
|
|
5 |
}
|
6 |
|
7 |
export interface FieldProps {
|
@@ -13,6 +14,7 @@ export interface FieldProps {
|
|
13 |
step?: number;
|
14 |
disabled?: boolean;
|
15 |
hide?: boolean;
|
|
|
16 |
}
|
17 |
export interface PipelineInfo {
|
18 |
name: string;
|
|
|
2 |
range = "range",
|
3 |
seed = "seed",
|
4 |
textarea = "textarea",
|
5 |
+
checkbox = "checkbox",
|
6 |
}
|
7 |
|
8 |
export interface FieldProps {
|
|
|
14 |
step?: number;
|
15 |
disabled?: boolean;
|
16 |
hide?: boolean;
|
17 |
+
id: string;
|
18 |
}
|
19 |
export interface PipelineInfo {
|
20 |
name: string;
|
frontend/src/lib/utils.ts
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
export function LCMLive(webcamVideo, liveImage) {
|
2 |
+
let websocket: WebSocket;
|
3 |
+
|
4 |
+
async function start() {
|
5 |
+
return new Promise((resolve, reject) => {
|
6 |
+
const websocketURL = `${window.location.protocol === "https:" ? "wss" : "ws"
|
7 |
+
}:${window.location.host}/ws`;
|
8 |
+
|
9 |
+
const socket = new WebSocket(websocketURL);
|
10 |
+
socket.onopen = () => {
|
11 |
+
console.log("Connected to websocket");
|
12 |
+
};
|
13 |
+
socket.onclose = () => {
|
14 |
+
console.log("Disconnected from websocket");
|
15 |
+
stop();
|
16 |
+
resolve({ "status": "disconnected" });
|
17 |
+
};
|
18 |
+
socket.onerror = (err) => {
|
19 |
+
console.error(err);
|
20 |
+
reject(err);
|
21 |
+
};
|
22 |
+
socket.onmessage = (event) => {
|
23 |
+
const data = JSON.parse(event.data);
|
24 |
+
switch (data.status) {
|
25 |
+
case "success":
|
26 |
+
break;
|
27 |
+
case "start":
|
28 |
+
const userId = data.userId;
|
29 |
+
initVideoStream(userId);
|
30 |
+
break;
|
31 |
+
case "timeout":
|
32 |
+
stop();
|
33 |
+
resolve({ "status": "timeout" });
|
34 |
+
case "error":
|
35 |
+
stop();
|
36 |
+
reject(data.message);
|
37 |
+
|
38 |
+
}
|
39 |
+
};
|
40 |
+
websocket = socket;
|
41 |
+
})
|
42 |
+
}
|
43 |
+
function switchCamera() {
|
44 |
+
const constraints = {
|
45 |
+
audio: false,
|
46 |
+
video: { width: 1024, height: 1024, deviceId: mediaDevices[webcamsEl.value].deviceId }
|
47 |
+
};
|
48 |
+
navigator.mediaDevices
|
49 |
+
.getUserMedia(constraints)
|
50 |
+
.then((mediaStream) => {
|
51 |
+
webcamVideo.removeEventListener("timeupdate", videoTimeUpdateHandler);
|
52 |
+
webcamVideo.srcObject = mediaStream;
|
53 |
+
webcamVideo.onloadedmetadata = () => {
|
54 |
+
webcamVideo.play();
|
55 |
+
webcamVideo.addEventListener("timeupdate", videoTimeUpdateHandler);
|
56 |
+
};
|
57 |
+
})
|
58 |
+
.catch((err) => {
|
59 |
+
console.error(`${err.name}: ${err.message}`);
|
60 |
+
});
|
61 |
+
}
|
62 |
+
|
63 |
+
async function videoTimeUpdateHandler() {
|
64 |
+
const dimension = getValue("input[name=dimension]:checked");
|
65 |
+
const [WIDTH, HEIGHT] = JSON.parse(dimension);
|
66 |
+
|
67 |
+
const canvas = new OffscreenCanvas(WIDTH, HEIGHT);
|
68 |
+
const videoW = webcamVideo.videoWidth;
|
69 |
+
const videoH = webcamVideo.videoHeight;
|
70 |
+
const aspectRatio = WIDTH / HEIGHT;
|
71 |
+
|
72 |
+
const ctx = canvas.getContext("2d");
|
73 |
+
ctx.drawImage(webcamVideo, videoW / 2 - videoH * aspectRatio / 2, 0, videoH * aspectRatio, videoH, 0, 0, WIDTH, HEIGHT)
|
74 |
+
const blob = await canvas.convertToBlob({ type: "image/jpeg", quality: 1 });
|
75 |
+
websocket.send(blob);
|
76 |
+
websocket.send(JSON.stringify({
|
77 |
+
"seed": getValue("#seed"),
|
78 |
+
"prompt": getValue("#prompt"),
|
79 |
+
"guidance_scale": getValue("#guidance-scale"),
|
80 |
+
"strength": getValue("#strength"),
|
81 |
+
"steps": getValue("#steps"),
|
82 |
+
"lcm_steps": getValue("#lcm_steps"),
|
83 |
+
"width": WIDTH,
|
84 |
+
"height": HEIGHT,
|
85 |
+
"controlnet_scale": getValue("#controlnet_scale"),
|
86 |
+
"controlnet_start": getValue("#controlnet_start"),
|
87 |
+
"controlnet_end": getValue("#controlnet_end"),
|
88 |
+
"canny_low_threshold": getValue("#canny_low_threshold"),
|
89 |
+
"canny_high_threshold": getValue("#canny_high_threshold"),
|
90 |
+
"debug_canny": getValue("#debug_canny")
|
91 |
+
}));
|
92 |
+
}
|
93 |
+
let mediaDevices = [];
|
94 |
+
async function initVideoStream(userId) {
|
95 |
+
liveImage.src = `/stream/${userId}`;
|
96 |
+
await navigator.mediaDevices.enumerateDevices()
|
97 |
+
.then(devices => {
|
98 |
+
const cameras = devices.filter(device => device.kind === 'videoinput');
|
99 |
+
mediaDevices = cameras;
|
100 |
+
webcamsEl.innerHTML = "";
|
101 |
+
cameras.forEach((camera, index) => {
|
102 |
+
const option = document.createElement("option");
|
103 |
+
option.value = index;
|
104 |
+
option.innerText = camera.label;
|
105 |
+
webcamsEl.appendChild(option);
|
106 |
+
option.selected = index === 0;
|
107 |
+
});
|
108 |
+
webcamsEl.addEventListener("change", switchCamera);
|
109 |
+
})
|
110 |
+
.catch(err => {
|
111 |
+
console.error(err);
|
112 |
+
});
|
113 |
+
const constraints = {
|
114 |
+
audio: false,
|
115 |
+
video: { width: 1024, height: 1024, deviceId: mediaDevices[0].deviceId }
|
116 |
+
};
|
117 |
+
navigator.mediaDevices
|
118 |
+
.getUserMedia(constraints)
|
119 |
+
.then((mediaStream) => {
|
120 |
+
webcamVideo.srcObject = mediaStream;
|
121 |
+
webcamVideo.onloadedmetadata = () => {
|
122 |
+
webcamVideo.play();
|
123 |
+
webcamVideo.addEventListener("timeupdate", videoTimeUpdateHandler);
|
124 |
+
};
|
125 |
+
})
|
126 |
+
.catch((err) => {
|
127 |
+
console.error(`${err.name}: ${err.message}`);
|
128 |
+
});
|
129 |
+
}
|
130 |
+
|
131 |
+
|
132 |
+
async function stop() {
|
133 |
+
websocket.close();
|
134 |
+
navigator.mediaDevices.getUserMedia({ video: true }).then((mediaStream) => {
|
135 |
+
mediaStream.getTracks().forEach((track) => track.stop());
|
136 |
+
});
|
137 |
+
webcamVideo.removeEventListener("timeupdate", videoTimeUpdateHandler);
|
138 |
+
webcamsEl.removeEventListener("change", switchCamera);
|
139 |
+
webcamVideo.srcObject = null;
|
140 |
+
}
|
141 |
+
return {
|
142 |
+
start,
|
143 |
+
stop
|
144 |
+
}
|
145 |
+
}
|
frontend/src/routes/+page.svelte
CHANGED
@@ -7,6 +7,13 @@
|
|
7 |
import Button from '$lib/components/Button.svelte';
|
8 |
import PipelineOptions from '$lib/components/PipelineOptions.svelte';
|
9 |
import Spinner from '$lib/icons/spinner.svelte';
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
let pipelineParams: FieldProps[];
|
12 |
let pipelineInfo: PipelineInfo;
|
@@ -21,11 +28,58 @@
|
|
21 |
pipelineParams = Object.values(settings.input_params.properties);
|
22 |
pipelineInfo = settings.info.properties;
|
23 |
pipelineParams = pipelineParams.filter((e) => e?.disabled !== true);
|
|
|
24 |
console.log('SETTINGS', pipelineInfo);
|
25 |
}
|
26 |
|
27 |
-
$: {
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
}
|
30 |
</script>
|
31 |
|
@@ -58,19 +112,26 @@
|
|
58 |
</p>
|
59 |
</article>
|
60 |
{#if pipelineParams}
|
61 |
-
<
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
|
|
|
|
69 |
<PipelineOptions {pipelineParams} bind:pipelineValues></PipelineOptions>
|
70 |
<div class="flex gap-3">
|
71 |
-
<Button>
|
72 |
-
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
74 |
</div>
|
75 |
|
76 |
<ImagePlayer>
|
|
|
7 |
import Button from '$lib/components/Button.svelte';
|
8 |
import PipelineOptions from '$lib/components/PipelineOptions.svelte';
|
9 |
import Spinner from '$lib/icons/spinner.svelte';
|
10 |
+
import { isLCMRunning, lcmLiveState, lcmLiveActions, LCMLiveStatus } from '$lib/lcmLive';
|
11 |
+
import {
|
12 |
+
mediaStreamState,
|
13 |
+
mediaStreamActions,
|
14 |
+
isMediaStreaming,
|
15 |
+
onFrameChangeStore
|
16 |
+
} from '$lib/mediaStream';
|
17 |
|
18 |
let pipelineParams: FieldProps[];
|
19 |
let pipelineInfo: PipelineInfo;
|
|
|
28 |
pipelineParams = Object.values(settings.input_params.properties);
|
29 |
pipelineInfo = settings.info.properties;
|
30 |
pipelineParams = pipelineParams.filter((e) => e?.disabled !== true);
|
31 |
+
console.log('PARAMS', pipelineParams);
|
32 |
console.log('SETTINGS', pipelineInfo);
|
33 |
}
|
34 |
|
35 |
+
// $: {
|
36 |
+
// console.log('isLCMRunning', $isLCMRunning);
|
37 |
+
// }
|
38 |
+
// $: {
|
39 |
+
// console.log('lcmLiveState', $lcmLiveState);
|
40 |
+
// }
|
41 |
+
// $: {
|
42 |
+
// console.log('mediaStreamState', $mediaStreamState);
|
43 |
+
// }
|
44 |
+
// $: if ($lcmLiveState.status === LCMLiveStatus.CONNECTED) {
|
45 |
+
// lcmLiveActions.send(pipelineValues);
|
46 |
+
// }
|
47 |
+
onFrameChangeStore.subscribe(async (frame) => {
|
48 |
+
if ($lcmLiveState.status === LCMLiveStatus.CONNECTED) {
|
49 |
+
lcmLiveActions.send(pipelineValues);
|
50 |
+
lcmLiveActions.send(frame.blob);
|
51 |
+
}
|
52 |
+
});
|
53 |
+
let startBt: Button;
|
54 |
+
let stopBt: Button;
|
55 |
+
let snapShotBt: Button;
|
56 |
+
|
57 |
+
async function toggleLcmLive() {
|
58 |
+
if (!$isLCMRunning) {
|
59 |
+
await mediaStreamActions.enumerateDevices();
|
60 |
+
await mediaStreamActions.start();
|
61 |
+
lcmLiveActions.start();
|
62 |
+
} else {
|
63 |
+
mediaStreamActions.stop();
|
64 |
+
lcmLiveActions.stop();
|
65 |
+
}
|
66 |
+
}
|
67 |
+
async function startLcmLive() {
|
68 |
+
try {
|
69 |
+
$isLCMRunning = true;
|
70 |
+
// const res = await lcmLive.start();
|
71 |
+
$isLCMRunning = false;
|
72 |
+
// if (res.status === "timeout")
|
73 |
+
// toggleMessage("success")
|
74 |
+
} catch (err) {
|
75 |
+
console.log(err);
|
76 |
+
// toggleMessage("error")
|
77 |
+
$isLCMRunning = false;
|
78 |
+
}
|
79 |
+
}
|
80 |
+
async function stopLcmLive() {
|
81 |
+
// await lcmLive.stop();
|
82 |
+
$isLCMRunning = false;
|
83 |
}
|
84 |
</script>
|
85 |
|
|
|
112 |
</p>
|
113 |
</article>
|
114 |
{#if pipelineParams}
|
115 |
+
<header>
|
116 |
+
<h2 class="font-medium">Prompt</h2>
|
117 |
+
<p class="text-sm text-gray-500">
|
118 |
+
Change the prompt to generate different images, accepts <a
|
119 |
+
href="https://github.com/damian0815/compel/blob/main/doc/syntax.md"
|
120 |
+
target="_blank"
|
121 |
+
class="text-blue-500 underline hover:no-underline">Compel</a
|
122 |
+
> syntax.
|
123 |
+
</p>
|
124 |
+
</header>
|
125 |
<PipelineOptions {pipelineParams} bind:pipelineValues></PipelineOptions>
|
126 |
<div class="flex gap-3">
|
127 |
+
<Button on:click={toggleLcmLive}>
|
128 |
+
{#if $isLCMRunning}
|
129 |
+
Stop
|
130 |
+
{:else}
|
131 |
+
Start
|
132 |
+
{/if}
|
133 |
+
</Button>
|
134 |
+
<Button disabled={$isLCMRunning} classList={'ml-auto'}>Snapshot</Button>
|
135 |
</div>
|
136 |
|
137 |
<ImagePlayer>
|
latent_consistency_controlnet.py
DELETED
@@ -1,1100 +0,0 @@
|
|
1 |
-
# from https://github.com/taabata/LCM_Inpaint_Outpaint_Comfy/blob/main/LCM/pipeline_cn.py
|
2 |
-
# Copyright 2023 Stanford University Team and The HuggingFace Team. All rights reserved.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion
|
17 |
-
# and https://github.com/hojonathanho/diffusion
|
18 |
-
|
19 |
-
import math
|
20 |
-
from dataclasses import dataclass
|
21 |
-
from typing import Any, Dict, List, Optional, Tuple, Union
|
22 |
-
|
23 |
-
import numpy as np
|
24 |
-
import torch
|
25 |
-
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
|
26 |
-
|
27 |
-
from diffusers import (
|
28 |
-
AutoencoderKL,
|
29 |
-
ConfigMixin,
|
30 |
-
DiffusionPipeline,
|
31 |
-
SchedulerMixin,
|
32 |
-
UNet2DConditionModel,
|
33 |
-
ControlNetModel,
|
34 |
-
logging,
|
35 |
-
)
|
36 |
-
from diffusers.configuration_utils import register_to_config
|
37 |
-
from diffusers.image_processor import VaeImageProcessor, PipelineImageInput
|
38 |
-
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
39 |
-
from diffusers.pipelines.stable_diffusion.safety_checker import (
|
40 |
-
StableDiffusionSafetyChecker,
|
41 |
-
)
|
42 |
-
from diffusers.utils import BaseOutput
|
43 |
-
|
44 |
-
from diffusers.utils.torch_utils import randn_tensor, is_compiled_module
|
45 |
-
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
|
46 |
-
|
47 |
-
|
48 |
-
import PIL.Image
|
49 |
-
|
50 |
-
|
51 |
-
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
52 |
-
|
53 |
-
|
54 |
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
55 |
-
def retrieve_latents(encoder_output, generator):
|
56 |
-
if hasattr(encoder_output, "latent_dist"):
|
57 |
-
return encoder_output.latent_dist.sample(generator)
|
58 |
-
elif hasattr(encoder_output, "latents"):
|
59 |
-
return encoder_output.latents
|
60 |
-
else:
|
61 |
-
raise AttributeError("Could not access latents of provided encoder_output")
|
62 |
-
|
63 |
-
|
64 |
-
class LatentConsistencyModelPipeline_controlnet(DiffusionPipeline):
|
65 |
-
_optional_components = ["scheduler"]
|
66 |
-
|
67 |
-
def __init__(
|
68 |
-
self,
|
69 |
-
vae: AutoencoderKL,
|
70 |
-
text_encoder: CLIPTextModel,
|
71 |
-
tokenizer: CLIPTokenizer,
|
72 |
-
controlnet: Union[
|
73 |
-
ControlNetModel,
|
74 |
-
List[ControlNetModel],
|
75 |
-
Tuple[ControlNetModel],
|
76 |
-
MultiControlNetModel,
|
77 |
-
],
|
78 |
-
unet: UNet2DConditionModel,
|
79 |
-
scheduler: "LCMScheduler",
|
80 |
-
safety_checker: StableDiffusionSafetyChecker,
|
81 |
-
feature_extractor: CLIPImageProcessor,
|
82 |
-
requires_safety_checker: bool = True,
|
83 |
-
):
|
84 |
-
super().__init__()
|
85 |
-
|
86 |
-
scheduler = (
|
87 |
-
scheduler
|
88 |
-
if scheduler is not None
|
89 |
-
else LCMScheduler_X(
|
90 |
-
beta_start=0.00085,
|
91 |
-
beta_end=0.0120,
|
92 |
-
beta_schedule="scaled_linear",
|
93 |
-
prediction_type="epsilon",
|
94 |
-
)
|
95 |
-
)
|
96 |
-
|
97 |
-
self.register_modules(
|
98 |
-
vae=vae,
|
99 |
-
text_encoder=text_encoder,
|
100 |
-
tokenizer=tokenizer,
|
101 |
-
unet=unet,
|
102 |
-
controlnet=controlnet,
|
103 |
-
scheduler=scheduler,
|
104 |
-
safety_checker=safety_checker,
|
105 |
-
feature_extractor=feature_extractor,
|
106 |
-
)
|
107 |
-
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
108 |
-
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
109 |
-
self.control_image_processor = VaeImageProcessor(
|
110 |
-
vae_scale_factor=self.vae_scale_factor,
|
111 |
-
do_convert_rgb=True,
|
112 |
-
do_normalize=False,
|
113 |
-
)
|
114 |
-
|
115 |
-
def _encode_prompt(
|
116 |
-
self,
|
117 |
-
prompt,
|
118 |
-
device,
|
119 |
-
num_images_per_prompt,
|
120 |
-
prompt_embeds: None,
|
121 |
-
):
|
122 |
-
r"""
|
123 |
-
Encodes the prompt into text encoder hidden states.
|
124 |
-
Args:
|
125 |
-
prompt (`str` or `List[str]`, *optional*):
|
126 |
-
prompt to be encoded
|
127 |
-
device: (`torch.device`):
|
128 |
-
torch device
|
129 |
-
num_images_per_prompt (`int`):
|
130 |
-
number of images that should be generated per prompt
|
131 |
-
prompt_embeds (`torch.FloatTensor`, *optional*):
|
132 |
-
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
133 |
-
provided, text embeddings will be generated from `prompt` input argument.
|
134 |
-
"""
|
135 |
-
|
136 |
-
if prompt is not None and isinstance(prompt, str):
|
137 |
-
pass
|
138 |
-
elif prompt is not None and isinstance(prompt, list):
|
139 |
-
len(prompt)
|
140 |
-
else:
|
141 |
-
prompt_embeds.shape[0]
|
142 |
-
|
143 |
-
if prompt_embeds is None:
|
144 |
-
text_inputs = self.tokenizer(
|
145 |
-
prompt,
|
146 |
-
padding="max_length",
|
147 |
-
max_length=self.tokenizer.model_max_length,
|
148 |
-
truncation=True,
|
149 |
-
return_tensors="pt",
|
150 |
-
)
|
151 |
-
text_input_ids = text_inputs.input_ids
|
152 |
-
untruncated_ids = self.tokenizer(
|
153 |
-
prompt, padding="longest", return_tensors="pt"
|
154 |
-
).input_ids
|
155 |
-
|
156 |
-
if untruncated_ids.shape[-1] >= text_input_ids.shape[
|
157 |
-
-1
|
158 |
-
] and not torch.equal(text_input_ids, untruncated_ids):
|
159 |
-
removed_text = self.tokenizer.batch_decode(
|
160 |
-
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
161 |
-
)
|
162 |
-
logger.warning(
|
163 |
-
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
164 |
-
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
165 |
-
)
|
166 |
-
|
167 |
-
if (
|
168 |
-
hasattr(self.text_encoder.config, "use_attention_mask")
|
169 |
-
and self.text_encoder.config.use_attention_mask
|
170 |
-
):
|
171 |
-
attention_mask = text_inputs.attention_mask.to(device)
|
172 |
-
else:
|
173 |
-
attention_mask = None
|
174 |
-
|
175 |
-
prompt_embeds = self.text_encoder(
|
176 |
-
text_input_ids.to(device),
|
177 |
-
attention_mask=attention_mask,
|
178 |
-
)
|
179 |
-
prompt_embeds = prompt_embeds[0]
|
180 |
-
|
181 |
-
if self.text_encoder is not None:
|
182 |
-
prompt_embeds_dtype = self.text_encoder.dtype
|
183 |
-
elif self.unet is not None:
|
184 |
-
prompt_embeds_dtype = self.unet.dtype
|
185 |
-
else:
|
186 |
-
prompt_embeds_dtype = prompt_embeds.dtype
|
187 |
-
|
188 |
-
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
189 |
-
|
190 |
-
bs_embed, seq_len, _ = prompt_embeds.shape
|
191 |
-
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
192 |
-
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
193 |
-
prompt_embeds = prompt_embeds.view(
|
194 |
-
bs_embed * num_images_per_prompt, seq_len, -1
|
195 |
-
)
|
196 |
-
|
197 |
-
# Don't need to get uncond prompt embedding because of LCM Guided Distillation
|
198 |
-
return prompt_embeds
|
199 |
-
|
200 |
-
def run_safety_checker(self, image, device, dtype):
|
201 |
-
if self.safety_checker is None:
|
202 |
-
has_nsfw_concept = None
|
203 |
-
else:
|
204 |
-
if torch.is_tensor(image):
|
205 |
-
feature_extractor_input = self.image_processor.postprocess(
|
206 |
-
image, output_type="pil"
|
207 |
-
)
|
208 |
-
else:
|
209 |
-
feature_extractor_input = self.image_processor.numpy_to_pil(image)
|
210 |
-
safety_checker_input = self.feature_extractor(
|
211 |
-
feature_extractor_input, return_tensors="pt"
|
212 |
-
).to(device)
|
213 |
-
image, has_nsfw_concept = self.safety_checker(
|
214 |
-
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
|
215 |
-
)
|
216 |
-
return image, has_nsfw_concept
|
217 |
-
|
218 |
-
def prepare_control_image(
|
219 |
-
self,
|
220 |
-
image,
|
221 |
-
width,
|
222 |
-
height,
|
223 |
-
batch_size,
|
224 |
-
num_images_per_prompt,
|
225 |
-
device,
|
226 |
-
dtype,
|
227 |
-
do_classifier_free_guidance=False,
|
228 |
-
guess_mode=False,
|
229 |
-
):
|
230 |
-
image = self.control_image_processor.preprocess(
|
231 |
-
image, height=height, width=width
|
232 |
-
).to(dtype=dtype)
|
233 |
-
image_batch_size = image.shape[0]
|
234 |
-
|
235 |
-
if image_batch_size == 1:
|
236 |
-
repeat_by = batch_size
|
237 |
-
else:
|
238 |
-
# image batch size is the same as prompt batch size
|
239 |
-
repeat_by = num_images_per_prompt
|
240 |
-
|
241 |
-
image = image.repeat_interleave(repeat_by, dim=0)
|
242 |
-
|
243 |
-
image = image.to(device=device, dtype=dtype)
|
244 |
-
|
245 |
-
if do_classifier_free_guidance and not guess_mode:
|
246 |
-
image = torch.cat([image] * 2)
|
247 |
-
|
248 |
-
return image
|
249 |
-
|
250 |
-
def prepare_latents(
|
251 |
-
self,
|
252 |
-
image,
|
253 |
-
timestep,
|
254 |
-
batch_size,
|
255 |
-
num_channels_latents,
|
256 |
-
height,
|
257 |
-
width,
|
258 |
-
dtype,
|
259 |
-
device,
|
260 |
-
latents=None,
|
261 |
-
generator=None,
|
262 |
-
):
|
263 |
-
shape = (
|
264 |
-
batch_size,
|
265 |
-
num_channels_latents,
|
266 |
-
height // self.vae_scale_factor,
|
267 |
-
width // self.vae_scale_factor,
|
268 |
-
)
|
269 |
-
|
270 |
-
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
|
271 |
-
raise ValueError(
|
272 |
-
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
|
273 |
-
)
|
274 |
-
|
275 |
-
image = image.to(device=device, dtype=dtype)
|
276 |
-
|
277 |
-
# batch_size = batch_size * num_images_per_prompt
|
278 |
-
|
279 |
-
if image.shape[1] == 4:
|
280 |
-
init_latents = image
|
281 |
-
|
282 |
-
else:
|
283 |
-
if isinstance(generator, list) and len(generator) != batch_size:
|
284 |
-
raise ValueError(
|
285 |
-
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
286 |
-
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
287 |
-
)
|
288 |
-
|
289 |
-
elif isinstance(generator, list):
|
290 |
-
init_latents = [
|
291 |
-
retrieve_latents(
|
292 |
-
self.vae.encode(image[i : i + 1]), generator=generator[i]
|
293 |
-
)
|
294 |
-
for i in range(batch_size)
|
295 |
-
]
|
296 |
-
init_latents = torch.cat(init_latents, dim=0)
|
297 |
-
else:
|
298 |
-
init_latents = retrieve_latents(
|
299 |
-
self.vae.encode(image), generator=generator
|
300 |
-
)
|
301 |
-
|
302 |
-
init_latents = self.vae.config.scaling_factor * init_latents
|
303 |
-
|
304 |
-
if (
|
305 |
-
batch_size > init_latents.shape[0]
|
306 |
-
and batch_size % init_latents.shape[0] == 0
|
307 |
-
):
|
308 |
-
# expand init_latents for batch_size
|
309 |
-
deprecation_message = (
|
310 |
-
f"You have passed {batch_size} text prompts (`prompt`), but only {init_latents.shape[0]} initial"
|
311 |
-
" images (`image`). Initial images are now duplicating to match the number of text prompts. Note"
|
312 |
-
" that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update"
|
313 |
-
" your script to pass as many initial images as text prompts to suppress this warning."
|
314 |
-
)
|
315 |
-
# deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False)
|
316 |
-
additional_image_per_prompt = batch_size // init_latents.shape[0]
|
317 |
-
init_latents = torch.cat(
|
318 |
-
[init_latents] * additional_image_per_prompt, dim=0
|
319 |
-
)
|
320 |
-
elif (
|
321 |
-
batch_size > init_latents.shape[0]
|
322 |
-
and batch_size % init_latents.shape[0] != 0
|
323 |
-
):
|
324 |
-
raise ValueError(
|
325 |
-
f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
|
326 |
-
)
|
327 |
-
else:
|
328 |
-
init_latents = torch.cat([init_latents], dim=0)
|
329 |
-
|
330 |
-
shape = init_latents.shape
|
331 |
-
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
332 |
-
|
333 |
-
# get latents
|
334 |
-
init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
|
335 |
-
latents = init_latents
|
336 |
-
|
337 |
-
return latents
|
338 |
-
|
339 |
-
if latents is None:
|
340 |
-
latents = torch.randn(shape, dtype=dtype).to(device)
|
341 |
-
else:
|
342 |
-
latents = latents.to(device)
|
343 |
-
# scale the initial noise by the standard deviation required by the scheduler
|
344 |
-
latents = latents * self.scheduler.init_noise_sigma
|
345 |
-
return latents
|
346 |
-
|
347 |
-
def get_w_embedding(self, w, embedding_dim=512, dtype=torch.float32):
|
348 |
-
"""
|
349 |
-
see https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
350 |
-
Args:
|
351 |
-
timesteps: torch.Tensor: generate embedding vectors at these timesteps
|
352 |
-
embedding_dim: int: dimension of the embeddings to generate
|
353 |
-
dtype: data type of the generated embeddings
|
354 |
-
Returns:
|
355 |
-
embedding vectors with shape `(len(timesteps), embedding_dim)`
|
356 |
-
"""
|
357 |
-
assert len(w.shape) == 1
|
358 |
-
w = w * 1000.0
|
359 |
-
|
360 |
-
half_dim = embedding_dim // 2
|
361 |
-
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
|
362 |
-
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
|
363 |
-
emb = w.to(dtype)[:, None] * emb[None, :]
|
364 |
-
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
365 |
-
if embedding_dim % 2 == 1: # zero pad
|
366 |
-
emb = torch.nn.functional.pad(emb, (0, 1))
|
367 |
-
assert emb.shape == (w.shape[0], embedding_dim)
|
368 |
-
return emb
|
369 |
-
|
370 |
-
def get_timesteps(self, num_inference_steps, strength, device):
|
371 |
-
# get the original timestep using init_timestep
|
372 |
-
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
373 |
-
|
374 |
-
t_start = max(num_inference_steps - init_timestep, 0)
|
375 |
-
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
|
376 |
-
|
377 |
-
return timesteps, num_inference_steps - t_start
|
378 |
-
|
379 |
-
@torch.no_grad()
|
380 |
-
def __call__(
|
381 |
-
self,
|
382 |
-
prompt: Union[str, List[str]] = None,
|
383 |
-
image: PipelineImageInput = None,
|
384 |
-
control_image: PipelineImageInput = None,
|
385 |
-
strength: float = 0.8,
|
386 |
-
height: Optional[int] = 768,
|
387 |
-
width: Optional[int] = 768,
|
388 |
-
guidance_scale: float = 7.5,
|
389 |
-
num_images_per_prompt: Optional[int] = 1,
|
390 |
-
latents: Optional[torch.FloatTensor] = None,
|
391 |
-
generator: Optional[torch.Generator] = None,
|
392 |
-
num_inference_steps: int = 4,
|
393 |
-
lcm_origin_steps: int = 50,
|
394 |
-
prompt_embeds: Optional[torch.FloatTensor] = None,
|
395 |
-
output_type: Optional[str] = "pil",
|
396 |
-
return_dict: bool = True,
|
397 |
-
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
398 |
-
controlnet_conditioning_scale: Union[float, List[float]] = 0.8,
|
399 |
-
guess_mode: bool = True,
|
400 |
-
control_guidance_start: Union[float, List[float]] = 0.0,
|
401 |
-
control_guidance_end: Union[float, List[float]] = 1.0,
|
402 |
-
):
|
403 |
-
controlnet = (
|
404 |
-
self.controlnet._orig_mod
|
405 |
-
if is_compiled_module(self.controlnet)
|
406 |
-
else self.controlnet
|
407 |
-
)
|
408 |
-
# 0. Default height and width to unet
|
409 |
-
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
410 |
-
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
411 |
-
if not isinstance(control_guidance_start, list) and isinstance(
|
412 |
-
control_guidance_end, list
|
413 |
-
):
|
414 |
-
control_guidance_start = len(control_guidance_end) * [
|
415 |
-
control_guidance_start
|
416 |
-
]
|
417 |
-
elif not isinstance(control_guidance_end, list) and isinstance(
|
418 |
-
control_guidance_start, list
|
419 |
-
):
|
420 |
-
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
|
421 |
-
elif not isinstance(control_guidance_start, list) and not isinstance(
|
422 |
-
control_guidance_end, list
|
423 |
-
):
|
424 |
-
mult = (
|
425 |
-
len(controlnet.nets)
|
426 |
-
if isinstance(controlnet, MultiControlNetModel)
|
427 |
-
else 1
|
428 |
-
)
|
429 |
-
control_guidance_start, control_guidance_end = mult * [
|
430 |
-
control_guidance_start
|
431 |
-
], mult * [control_guidance_end]
|
432 |
-
# 2. Define call parameters
|
433 |
-
if prompt is not None and isinstance(prompt, str):
|
434 |
-
batch_size = 1
|
435 |
-
elif prompt is not None and isinstance(prompt, list):
|
436 |
-
batch_size = len(prompt)
|
437 |
-
else:
|
438 |
-
batch_size = prompt_embeds.shape[0]
|
439 |
-
|
440 |
-
device = self._execution_device
|
441 |
-
# do_classifier_free_guidance = guidance_scale > 0.0 # In LCM Implementation: cfg_noise = noise_cond + cfg_scale * (noise_cond - noise_uncond) , (cfg_scale > 0.0 using CFG)
|
442 |
-
global_pool_conditions = (
|
443 |
-
controlnet.config.global_pool_conditions
|
444 |
-
if isinstance(controlnet, ControlNetModel)
|
445 |
-
else controlnet.nets[0].config.global_pool_conditions
|
446 |
-
)
|
447 |
-
guess_mode = guess_mode or global_pool_conditions
|
448 |
-
# 3. Encode input prompt
|
449 |
-
prompt_embeds = self._encode_prompt(
|
450 |
-
prompt,
|
451 |
-
device,
|
452 |
-
num_images_per_prompt,
|
453 |
-
prompt_embeds=prompt_embeds,
|
454 |
-
)
|
455 |
-
|
456 |
-
# 3.5 encode image
|
457 |
-
image = self.image_processor.preprocess(image)
|
458 |
-
|
459 |
-
if isinstance(controlnet, ControlNetModel):
|
460 |
-
control_image = self.prepare_control_image(
|
461 |
-
image=control_image,
|
462 |
-
width=width,
|
463 |
-
height=height,
|
464 |
-
batch_size=batch_size * num_images_per_prompt,
|
465 |
-
num_images_per_prompt=num_images_per_prompt,
|
466 |
-
device=device,
|
467 |
-
dtype=controlnet.dtype,
|
468 |
-
guess_mode=guess_mode,
|
469 |
-
)
|
470 |
-
elif isinstance(controlnet, MultiControlNetModel):
|
471 |
-
control_images = []
|
472 |
-
|
473 |
-
for control_image_ in control_image:
|
474 |
-
control_image_ = self.prepare_control_image(
|
475 |
-
image=control_image_,
|
476 |
-
width=width,
|
477 |
-
height=height,
|
478 |
-
batch_size=batch_size * num_images_per_prompt,
|
479 |
-
num_images_per_prompt=num_images_per_prompt,
|
480 |
-
device=device,
|
481 |
-
dtype=controlnet.dtype,
|
482 |
-
do_classifier_free_guidance=do_classifier_free_guidance,
|
483 |
-
guess_mode=guess_mode,
|
484 |
-
)
|
485 |
-
|
486 |
-
control_images.append(control_image_)
|
487 |
-
|
488 |
-
control_image = control_images
|
489 |
-
else:
|
490 |
-
assert False
|
491 |
-
|
492 |
-
# 4. Prepare timesteps
|
493 |
-
self.scheduler.set_timesteps(strength, num_inference_steps, lcm_origin_steps)
|
494 |
-
# timesteps = self.scheduler.timesteps
|
495 |
-
# timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, 1.0, device)
|
496 |
-
timesteps = self.scheduler.timesteps
|
497 |
-
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
498 |
-
|
499 |
-
print("timesteps: ", timesteps)
|
500 |
-
|
501 |
-
# 5. Prepare latent variable
|
502 |
-
num_channels_latents = self.unet.config.in_channels
|
503 |
-
latents = self.prepare_latents(
|
504 |
-
image,
|
505 |
-
latent_timestep,
|
506 |
-
batch_size * num_images_per_prompt,
|
507 |
-
num_channels_latents,
|
508 |
-
height,
|
509 |
-
width,
|
510 |
-
prompt_embeds.dtype,
|
511 |
-
device,
|
512 |
-
latents,
|
513 |
-
)
|
514 |
-
bs = batch_size * num_images_per_prompt
|
515 |
-
|
516 |
-
# 6. Get Guidance Scale Embedding
|
517 |
-
w = torch.tensor(guidance_scale).repeat(bs)
|
518 |
-
w_embedding = self.get_w_embedding(w, embedding_dim=256).to(
|
519 |
-
device=device, dtype=latents.dtype
|
520 |
-
)
|
521 |
-
controlnet_keep = []
|
522 |
-
for i in range(len(timesteps)):
|
523 |
-
keeps = [
|
524 |
-
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
|
525 |
-
for s, e in zip(control_guidance_start, control_guidance_end)
|
526 |
-
]
|
527 |
-
controlnet_keep.append(
|
528 |
-
keeps[0] if isinstance(controlnet, ControlNetModel) else keeps
|
529 |
-
)
|
530 |
-
# 7. LCM MultiStep Sampling Loop:
|
531 |
-
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
532 |
-
for i, t in enumerate(timesteps):
|
533 |
-
ts = torch.full((bs,), t, device=device, dtype=torch.long)
|
534 |
-
latents = latents.to(prompt_embeds.dtype)
|
535 |
-
if guess_mode:
|
536 |
-
# Infer ControlNet only for the conditional batch.
|
537 |
-
control_model_input = latents
|
538 |
-
control_model_input = self.scheduler.scale_model_input(
|
539 |
-
control_model_input, ts
|
540 |
-
)
|
541 |
-
controlnet_prompt_embeds = prompt_embeds
|
542 |
-
else:
|
543 |
-
control_model_input = latents
|
544 |
-
controlnet_prompt_embeds = prompt_embeds
|
545 |
-
if isinstance(controlnet_keep[i], list):
|
546 |
-
cond_scale = [
|
547 |
-
c * s
|
548 |
-
for c, s in zip(
|
549 |
-
controlnet_conditioning_scale, controlnet_keep[i]
|
550 |
-
)
|
551 |
-
]
|
552 |
-
else:
|
553 |
-
controlnet_cond_scale = controlnet_conditioning_scale
|
554 |
-
if isinstance(controlnet_cond_scale, list):
|
555 |
-
controlnet_cond_scale = controlnet_cond_scale[0]
|
556 |
-
cond_scale = controlnet_cond_scale * controlnet_keep[i]
|
557 |
-
|
558 |
-
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
559 |
-
control_model_input,
|
560 |
-
ts,
|
561 |
-
encoder_hidden_states=controlnet_prompt_embeds,
|
562 |
-
controlnet_cond=control_image,
|
563 |
-
conditioning_scale=cond_scale,
|
564 |
-
guess_mode=guess_mode,
|
565 |
-
return_dict=False,
|
566 |
-
)
|
567 |
-
# model prediction (v-prediction, eps, x)
|
568 |
-
model_pred = self.unet(
|
569 |
-
latents,
|
570 |
-
ts,
|
571 |
-
timestep_cond=w_embedding,
|
572 |
-
encoder_hidden_states=prompt_embeds,
|
573 |
-
cross_attention_kwargs=cross_attention_kwargs,
|
574 |
-
down_block_additional_residuals=down_block_res_samples,
|
575 |
-
mid_block_additional_residual=mid_block_res_sample,
|
576 |
-
return_dict=False,
|
577 |
-
)[0]
|
578 |
-
|
579 |
-
# compute the previous noisy sample x_t -> x_t-1
|
580 |
-
latents, denoised = self.scheduler.step(
|
581 |
-
model_pred, i, t, latents, return_dict=False
|
582 |
-
)
|
583 |
-
|
584 |
-
# # call the callback, if provided
|
585 |
-
# if i == len(timesteps) - 1:
|
586 |
-
progress_bar.update()
|
587 |
-
|
588 |
-
denoised = denoised.to(prompt_embeds.dtype)
|
589 |
-
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
590 |
-
self.unet.to("cpu")
|
591 |
-
self.controlnet.to("cpu")
|
592 |
-
torch.cuda.empty_cache()
|
593 |
-
if not output_type == "latent":
|
594 |
-
image = self.vae.decode(
|
595 |
-
denoised / self.vae.config.scaling_factor, return_dict=False
|
596 |
-
)[0]
|
597 |
-
image, has_nsfw_concept = self.run_safety_checker(
|
598 |
-
image, device, prompt_embeds.dtype
|
599 |
-
)
|
600 |
-
else:
|
601 |
-
image = denoised
|
602 |
-
has_nsfw_concept = None
|
603 |
-
|
604 |
-
if has_nsfw_concept is None:
|
605 |
-
do_denormalize = [True] * image.shape[0]
|
606 |
-
else:
|
607 |
-
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
608 |
-
|
609 |
-
image = self.image_processor.postprocess(
|
610 |
-
image, output_type=output_type, do_denormalize=do_denormalize
|
611 |
-
)
|
612 |
-
|
613 |
-
if not return_dict:
|
614 |
-
return (image, has_nsfw_concept)
|
615 |
-
|
616 |
-
return StableDiffusionPipelineOutput(
|
617 |
-
images=image, nsfw_content_detected=has_nsfw_concept
|
618 |
-
)
|
619 |
-
|
620 |
-
|
621 |
-
@dataclass
|
622 |
-
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM
|
623 |
-
class LCMSchedulerOutput(BaseOutput):
|
624 |
-
"""
|
625 |
-
Output class for the scheduler's `step` function output.
|
626 |
-
Args:
|
627 |
-
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
|
628 |
-
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
|
629 |
-
denoising loop.
|
630 |
-
pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
|
631 |
-
The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
|
632 |
-
`pred_original_sample` can be used to preview progress or for guidance.
|
633 |
-
"""
|
634 |
-
|
635 |
-
prev_sample: torch.FloatTensor
|
636 |
-
denoised: Optional[torch.FloatTensor] = None
|
637 |
-
|
638 |
-
|
639 |
-
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
|
640 |
-
def betas_for_alpha_bar(
|
641 |
-
num_diffusion_timesteps,
|
642 |
-
max_beta=0.999,
|
643 |
-
alpha_transform_type="cosine",
|
644 |
-
):
|
645 |
-
"""
|
646 |
-
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
647 |
-
(1-beta) over time from t = [0,1].
|
648 |
-
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
|
649 |
-
to that part of the diffusion process.
|
650 |
-
Args:
|
651 |
-
num_diffusion_timesteps (`int`): the number of betas to produce.
|
652 |
-
max_beta (`float`): the maximum beta to use; use values lower than 1 to
|
653 |
-
prevent singularities.
|
654 |
-
alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
|
655 |
-
Choose from `cosine` or `exp`
|
656 |
-
Returns:
|
657 |
-
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
|
658 |
-
"""
|
659 |
-
if alpha_transform_type == "cosine":
|
660 |
-
|
661 |
-
def alpha_bar_fn(t):
|
662 |
-
return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2
|
663 |
-
|
664 |
-
elif alpha_transform_type == "exp":
|
665 |
-
|
666 |
-
def alpha_bar_fn(t):
|
667 |
-
return math.exp(t * -12.0)
|
668 |
-
|
669 |
-
else:
|
670 |
-
raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}")
|
671 |
-
|
672 |
-
betas = []
|
673 |
-
for i in range(num_diffusion_timesteps):
|
674 |
-
t1 = i / num_diffusion_timesteps
|
675 |
-
t2 = (i + 1) / num_diffusion_timesteps
|
676 |
-
betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
|
677 |
-
return torch.tensor(betas, dtype=torch.float32)
|
678 |
-
|
679 |
-
|
680 |
-
def rescale_zero_terminal_snr(betas):
|
681 |
-
"""
|
682 |
-
Rescales betas to have zero terminal SNR Based on https://arxiv.org/pdf/2305.08891.pdf (Algorithm 1)
|
683 |
-
Args:
|
684 |
-
betas (`torch.FloatTensor`):
|
685 |
-
the betas that the scheduler is being initialized with.
|
686 |
-
Returns:
|
687 |
-
`torch.FloatTensor`: rescaled betas with zero terminal SNR
|
688 |
-
"""
|
689 |
-
# Convert betas to alphas_bar_sqrt
|
690 |
-
alphas = 1.0 - betas
|
691 |
-
alphas_cumprod = torch.cumprod(alphas, dim=0)
|
692 |
-
alphas_bar_sqrt = alphas_cumprod.sqrt()
|
693 |
-
|
694 |
-
# Store old values.
|
695 |
-
alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
|
696 |
-
alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()
|
697 |
-
|
698 |
-
# Shift so the last timestep is zero.
|
699 |
-
alphas_bar_sqrt -= alphas_bar_sqrt_T
|
700 |
-
|
701 |
-
# Scale so the first timestep is back to the old value.
|
702 |
-
alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)
|
703 |
-
|
704 |
-
# Convert alphas_bar_sqrt to betas
|
705 |
-
alphas_bar = alphas_bar_sqrt**2 # Revert sqrt
|
706 |
-
alphas = alphas_bar[1:] / alphas_bar[:-1] # Revert cumprod
|
707 |
-
alphas = torch.cat([alphas_bar[0:1], alphas])
|
708 |
-
betas = 1 - alphas
|
709 |
-
|
710 |
-
return betas
|
711 |
-
|
712 |
-
|
713 |
-
class LCMScheduler_X(SchedulerMixin, ConfigMixin):
|
714 |
-
"""
|
715 |
-
`LCMScheduler` extends the denoising procedure introduced in denoising diffusion probabilistic models (DDPMs) with
|
716 |
-
non-Markovian guidance.
|
717 |
-
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
|
718 |
-
methods the library implements for all schedulers such as loading and saving.
|
719 |
-
Args:
|
720 |
-
num_train_timesteps (`int`, defaults to 1000):
|
721 |
-
The number of diffusion steps to train the model.
|
722 |
-
beta_start (`float`, defaults to 0.0001):
|
723 |
-
The starting `beta` value of inference.
|
724 |
-
beta_end (`float`, defaults to 0.02):
|
725 |
-
The final `beta` value.
|
726 |
-
beta_schedule (`str`, defaults to `"linear"`):
|
727 |
-
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
|
728 |
-
`linear`, `scaled_linear`, or `squaredcos_cap_v2`.
|
729 |
-
trained_betas (`np.ndarray`, *optional*):
|
730 |
-
Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
|
731 |
-
clip_sample (`bool`, defaults to `True`):
|
732 |
-
Clip the predicted sample for numerical stability.
|
733 |
-
clip_sample_range (`float`, defaults to 1.0):
|
734 |
-
The maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
|
735 |
-
set_alpha_to_one (`bool`, defaults to `True`):
|
736 |
-
Each diffusion step uses the alphas product value at that step and at the previous one. For the final step
|
737 |
-
there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`,
|
738 |
-
otherwise it uses the alpha value at step 0.
|
739 |
-
steps_offset (`int`, defaults to 0):
|
740 |
-
An offset added to the inference steps. You can use a combination of `offset=1` and
|
741 |
-
`set_alpha_to_one=False` to make the last step use step 0 for the previous alpha product like in Stable
|
742 |
-
Diffusion.
|
743 |
-
prediction_type (`str`, defaults to `epsilon`, *optional*):
|
744 |
-
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
|
745 |
-
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
|
746 |
-
Video](https://imagen.research.google/video/paper.pdf) paper).
|
747 |
-
thresholding (`bool`, defaults to `False`):
|
748 |
-
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
|
749 |
-
as Stable Diffusion.
|
750 |
-
dynamic_thresholding_ratio (`float`, defaults to 0.995):
|
751 |
-
The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
|
752 |
-
sample_max_value (`float`, defaults to 1.0):
|
753 |
-
The threshold value for dynamic thresholding. Valid only when `thresholding=True`.
|
754 |
-
timestep_spacing (`str`, defaults to `"leading"`):
|
755 |
-
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
|
756 |
-
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
|
757 |
-
rescale_betas_zero_snr (`bool`, defaults to `False`):
|
758 |
-
Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
|
759 |
-
dark samples instead of limiting it to samples with medium brightness. Loosely related to
|
760 |
-
[`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
|
761 |
-
"""
|
762 |
-
|
763 |
-
# _compatibles = [e.name for e in KarrasDiffusionSchedulers]
|
764 |
-
order = 1
|
765 |
-
|
766 |
-
@register_to_config
|
767 |
-
def __init__(
|
768 |
-
self,
|
769 |
-
num_train_timesteps: int = 1000,
|
770 |
-
beta_start: float = 0.0001,
|
771 |
-
beta_end: float = 0.02,
|
772 |
-
beta_schedule: str = "linear",
|
773 |
-
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
|
774 |
-
clip_sample: bool = True,
|
775 |
-
set_alpha_to_one: bool = True,
|
776 |
-
steps_offset: int = 0,
|
777 |
-
prediction_type: str = "epsilon",
|
778 |
-
thresholding: bool = False,
|
779 |
-
dynamic_thresholding_ratio: float = 0.995,
|
780 |
-
clip_sample_range: float = 1.0,
|
781 |
-
sample_max_value: float = 1.0,
|
782 |
-
timestep_spacing: str = "leading",
|
783 |
-
rescale_betas_zero_snr: bool = False,
|
784 |
-
):
|
785 |
-
if trained_betas is not None:
|
786 |
-
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
|
787 |
-
elif beta_schedule == "linear":
|
788 |
-
self.betas = torch.linspace(
|
789 |
-
beta_start, beta_end, num_train_timesteps, dtype=torch.float32
|
790 |
-
)
|
791 |
-
elif beta_schedule == "scaled_linear":
|
792 |
-
# this schedule is very specific to the latent diffusion model.
|
793 |
-
self.betas = (
|
794 |
-
torch.linspace(
|
795 |
-
beta_start**0.5,
|
796 |
-
beta_end**0.5,
|
797 |
-
num_train_timesteps,
|
798 |
-
dtype=torch.float32,
|
799 |
-
)
|
800 |
-
** 2
|
801 |
-
)
|
802 |
-
elif beta_schedule == "squaredcos_cap_v2":
|
803 |
-
# Glide cosine schedule
|
804 |
-
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
805 |
-
else:
|
806 |
-
raise NotImplementedError(
|
807 |
-
f"{beta_schedule} does is not implemented for {self.__class__}"
|
808 |
-
)
|
809 |
-
|
810 |
-
# Rescale for zero SNR
|
811 |
-
if rescale_betas_zero_snr:
|
812 |
-
self.betas = rescale_zero_terminal_snr(self.betas)
|
813 |
-
|
814 |
-
self.alphas = 1.0 - self.betas
|
815 |
-
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
|
816 |
-
|
817 |
-
# At every step in ddim, we are looking into the previous alphas_cumprod
|
818 |
-
# For the final step, there is no previous alphas_cumprod because we are already at 0
|
819 |
-
# `set_alpha_to_one` decides whether we set this parameter simply to one or
|
820 |
-
# whether we use the final alpha of the "non-previous" one.
|
821 |
-
self.final_alpha_cumprod = (
|
822 |
-
torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0]
|
823 |
-
)
|
824 |
-
|
825 |
-
# standard deviation of the initial noise distribution
|
826 |
-
self.init_noise_sigma = 1.0
|
827 |
-
|
828 |
-
# setable values
|
829 |
-
self.num_inference_steps = None
|
830 |
-
self.timesteps = torch.from_numpy(
|
831 |
-
np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64)
|
832 |
-
)
|
833 |
-
|
834 |
-
def scale_model_input(
|
835 |
-
self, sample: torch.FloatTensor, timestep: Optional[int] = None
|
836 |
-
) -> torch.FloatTensor:
|
837 |
-
"""
|
838 |
-
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
|
839 |
-
current timestep.
|
840 |
-
Args:
|
841 |
-
sample (`torch.FloatTensor`):
|
842 |
-
The input sample.
|
843 |
-
timestep (`int`, *optional*):
|
844 |
-
The current timestep in the diffusion chain.
|
845 |
-
Returns:
|
846 |
-
`torch.FloatTensor`:
|
847 |
-
A scaled input sample.
|
848 |
-
"""
|
849 |
-
return sample
|
850 |
-
|
851 |
-
def _get_variance(self, timestep, prev_timestep):
|
852 |
-
alpha_prod_t = self.alphas_cumprod[timestep]
|
853 |
-
alpha_prod_t_prev = (
|
854 |
-
self.alphas_cumprod[prev_timestep]
|
855 |
-
if prev_timestep >= 0
|
856 |
-
else self.final_alpha_cumprod
|
857 |
-
)
|
858 |
-
beta_prod_t = 1 - alpha_prod_t
|
859 |
-
beta_prod_t_prev = 1 - alpha_prod_t_prev
|
860 |
-
|
861 |
-
variance = (beta_prod_t_prev / beta_prod_t) * (
|
862 |
-
1 - alpha_prod_t / alpha_prod_t_prev
|
863 |
-
)
|
864 |
-
|
865 |
-
return variance
|
866 |
-
|
867 |
-
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
|
868 |
-
def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor:
|
869 |
-
"""
|
870 |
-
"Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
|
871 |
-
prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
|
872 |
-
s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
|
873 |
-
pixels from saturation at each step. We find that dynamic thresholding results in significantly better
|
874 |
-
photorealism as well as better image-text alignment, especially when using very large guidance weights."
|
875 |
-
https://arxiv.org/abs/2205.11487
|
876 |
-
"""
|
877 |
-
dtype = sample.dtype
|
878 |
-
batch_size, channels, height, width = sample.shape
|
879 |
-
|
880 |
-
if dtype not in (torch.float32, torch.float64):
|
881 |
-
sample = (
|
882 |
-
sample.float()
|
883 |
-
) # upcast for quantile calculation, and clamp not implemented for cpu half
|
884 |
-
|
885 |
-
# Flatten sample for doing quantile calculation along each image
|
886 |
-
sample = sample.reshape(batch_size, channels * height * width)
|
887 |
-
|
888 |
-
abs_sample = sample.abs() # "a certain percentile absolute pixel value"
|
889 |
-
|
890 |
-
s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
|
891 |
-
s = torch.clamp(
|
892 |
-
s, min=1, max=self.config.sample_max_value
|
893 |
-
) # When clamped to min=1, equivalent to standard clipping to [-1, 1]
|
894 |
-
|
895 |
-
s = s.unsqueeze(1) # (batch_size, 1) because clamp will broadcast along dim=0
|
896 |
-
sample = (
|
897 |
-
torch.clamp(sample, -s, s) / s
|
898 |
-
) # "we threshold xt0 to the range [-s, s] and then divide by s"
|
899 |
-
|
900 |
-
sample = sample.reshape(batch_size, channels, height, width)
|
901 |
-
sample = sample.to(dtype)
|
902 |
-
|
903 |
-
return sample
|
904 |
-
|
905 |
-
def set_timesteps(
|
906 |
-
self,
|
907 |
-
stength,
|
908 |
-
num_inference_steps: int,
|
909 |
-
lcm_origin_steps: int,
|
910 |
-
device: Union[str, torch.device] = None,
|
911 |
-
):
|
912 |
-
"""
|
913 |
-
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
914 |
-
Args:
|
915 |
-
num_inference_steps (`int`):
|
916 |
-
The number of diffusion steps used when generating samples with a pre-trained model.
|
917 |
-
"""
|
918 |
-
|
919 |
-
if num_inference_steps > self.config.num_train_timesteps:
|
920 |
-
raise ValueError(
|
921 |
-
f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
|
922 |
-
f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
|
923 |
-
f" maximal {self.config.num_train_timesteps} timesteps."
|
924 |
-
)
|
925 |
-
|
926 |
-
self.num_inference_steps = num_inference_steps
|
927 |
-
|
928 |
-
# LCM Timesteps Setting: # Linear Spacing
|
929 |
-
c = self.config.num_train_timesteps // lcm_origin_steps
|
930 |
-
lcm_origin_timesteps = (
|
931 |
-
np.asarray(list(range(1, int(lcm_origin_steps * stength) + 1))) * c - 1
|
932 |
-
) # LCM Training Steps Schedule
|
933 |
-
skipping_step = max(len(lcm_origin_timesteps) // num_inference_steps, 1)
|
934 |
-
timesteps = lcm_origin_timesteps[::-skipping_step][
|
935 |
-
:num_inference_steps
|
936 |
-
] # LCM Inference Steps Schedule
|
937 |
-
|
938 |
-
self.timesteps = torch.from_numpy(timesteps.copy()).to(device)
|
939 |
-
|
940 |
-
def get_scalings_for_boundary_condition_discrete(self, t):
|
941 |
-
self.sigma_data = 0.5 # Default: 0.5
|
942 |
-
|
943 |
-
# By dividing 0.1: This is almost a delta function at t=0.
|
944 |
-
c_skip = self.sigma_data**2 / ((t / 0.1) ** 2 + self.sigma_data**2)
|
945 |
-
c_out = (t / 0.1) / ((t / 0.1) ** 2 + self.sigma_data**2) ** 0.5
|
946 |
-
return c_skip, c_out
|
947 |
-
|
948 |
-
def step(
|
949 |
-
self,
|
950 |
-
model_output: torch.FloatTensor,
|
951 |
-
timeindex: int,
|
952 |
-
timestep: int,
|
953 |
-
sample: torch.FloatTensor,
|
954 |
-
eta: float = 0.0,
|
955 |
-
use_clipped_model_output: bool = False,
|
956 |
-
generator=None,
|
957 |
-
variance_noise: Optional[torch.FloatTensor] = None,
|
958 |
-
return_dict: bool = True,
|
959 |
-
) -> Union[LCMSchedulerOutput, Tuple]:
|
960 |
-
"""
|
961 |
-
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
|
962 |
-
process from the learned model outputs (most often the predicted noise).
|
963 |
-
Args:
|
964 |
-
model_output (`torch.FloatTensor`):
|
965 |
-
The direct output from learned diffusion model.
|
966 |
-
timestep (`float`):
|
967 |
-
The current discrete timestep in the diffusion chain.
|
968 |
-
sample (`torch.FloatTensor`):
|
969 |
-
A current instance of a sample created by the diffusion process.
|
970 |
-
eta (`float`):
|
971 |
-
The weight of noise for added noise in diffusion step.
|
972 |
-
use_clipped_model_output (`bool`, defaults to `False`):
|
973 |
-
If `True`, computes "corrected" `model_output` from the clipped predicted original sample. Necessary
|
974 |
-
because predicted original sample is clipped to [-1, 1] when `self.config.clip_sample` is `True`. If no
|
975 |
-
clipping has happened, "corrected" `model_output` would coincide with the one provided as input and
|
976 |
-
`use_clipped_model_output` has no effect.
|
977 |
-
generator (`torch.Generator`, *optional*):
|
978 |
-
A random number generator.
|
979 |
-
variance_noise (`torch.FloatTensor`):
|
980 |
-
Alternative to generating noise with `generator` by directly providing the noise for the variance
|
981 |
-
itself. Useful for methods such as [`CycleDiffusion`].
|
982 |
-
return_dict (`bool`, *optional*, defaults to `True`):
|
983 |
-
Whether or not to return a [`~schedulers.scheduling_lcm.LCMSchedulerOutput`] or `tuple`.
|
984 |
-
Returns:
|
985 |
-
[`~schedulers.scheduling_utils.LCMSchedulerOutput`] or `tuple`:
|
986 |
-
If return_dict is `True`, [`~schedulers.scheduling_lcm.LCMSchedulerOutput`] is returned, otherwise a
|
987 |
-
tuple is returned where the first element is the sample tensor.
|
988 |
-
"""
|
989 |
-
if self.num_inference_steps is None:
|
990 |
-
raise ValueError(
|
991 |
-
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
|
992 |
-
)
|
993 |
-
|
994 |
-
# 1. get previous step value
|
995 |
-
prev_timeindex = timeindex + 1
|
996 |
-
if prev_timeindex < len(self.timesteps):
|
997 |
-
prev_timestep = self.timesteps[prev_timeindex]
|
998 |
-
else:
|
999 |
-
prev_timestep = timestep
|
1000 |
-
|
1001 |
-
# 2. compute alphas, betas
|
1002 |
-
alpha_prod_t = self.alphas_cumprod[timestep]
|
1003 |
-
alpha_prod_t_prev = (
|
1004 |
-
self.alphas_cumprod[prev_timestep]
|
1005 |
-
if prev_timestep >= 0
|
1006 |
-
else self.final_alpha_cumprod
|
1007 |
-
)
|
1008 |
-
|
1009 |
-
beta_prod_t = 1 - alpha_prod_t
|
1010 |
-
beta_prod_t_prev = 1 - alpha_prod_t_prev
|
1011 |
-
|
1012 |
-
# 3. Get scalings for boundary conditions
|
1013 |
-
c_skip, c_out = self.get_scalings_for_boundary_condition_discrete(timestep)
|
1014 |
-
|
1015 |
-
# 4. Different Parameterization:
|
1016 |
-
parameterization = self.config.prediction_type
|
1017 |
-
|
1018 |
-
if parameterization == "epsilon": # noise-prediction
|
1019 |
-
pred_x0 = (sample - beta_prod_t.sqrt() * model_output) / alpha_prod_t.sqrt()
|
1020 |
-
|
1021 |
-
elif parameterization == "sample": # x-prediction
|
1022 |
-
pred_x0 = model_output
|
1023 |
-
|
1024 |
-
elif parameterization == "v_prediction": # v-prediction
|
1025 |
-
pred_x0 = alpha_prod_t.sqrt() * sample - beta_prod_t.sqrt() * model_output
|
1026 |
-
|
1027 |
-
# 4. Denoise model output using boundary conditions
|
1028 |
-
denoised = c_out * pred_x0 + c_skip * sample
|
1029 |
-
|
1030 |
-
# 5. Sample z ~ N(0, I), For MultiStep Inference
|
1031 |
-
# Noise is not used for one-step sampling.
|
1032 |
-
if len(self.timesteps) > 1:
|
1033 |
-
noise = torch.randn(model_output.shape).to(model_output.device)
|
1034 |
-
prev_sample = (
|
1035 |
-
alpha_prod_t_prev.sqrt() * denoised + beta_prod_t_prev.sqrt() * noise
|
1036 |
-
)
|
1037 |
-
else:
|
1038 |
-
prev_sample = denoised
|
1039 |
-
|
1040 |
-
if not return_dict:
|
1041 |
-
return (prev_sample, denoised)
|
1042 |
-
|
1043 |
-
return LCMSchedulerOutput(prev_sample=prev_sample, denoised=denoised)
|
1044 |
-
|
1045 |
-
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise
|
1046 |
-
def add_noise(
|
1047 |
-
self,
|
1048 |
-
original_samples: torch.FloatTensor,
|
1049 |
-
noise: torch.FloatTensor,
|
1050 |
-
timesteps: torch.IntTensor,
|
1051 |
-
) -> torch.FloatTensor:
|
1052 |
-
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples
|
1053 |
-
alphas_cumprod = self.alphas_cumprod.to(
|
1054 |
-
device=original_samples.device, dtype=original_samples.dtype
|
1055 |
-
)
|
1056 |
-
timesteps = timesteps.to(original_samples.device)
|
1057 |
-
|
1058 |
-
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
|
1059 |
-
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
|
1060 |
-
while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
|
1061 |
-
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
|
1062 |
-
|
1063 |
-
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
|
1064 |
-
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
|
1065 |
-
while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
|
1066 |
-
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
|
1067 |
-
|
1068 |
-
noisy_samples = (
|
1069 |
-
sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
|
1070 |
-
)
|
1071 |
-
return noisy_samples
|
1072 |
-
|
1073 |
-
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.get_velocity
|
1074 |
-
def get_velocity(
|
1075 |
-
self,
|
1076 |
-
sample: torch.FloatTensor,
|
1077 |
-
noise: torch.FloatTensor,
|
1078 |
-
timesteps: torch.IntTensor,
|
1079 |
-
) -> torch.FloatTensor:
|
1080 |
-
# Make sure alphas_cumprod and timestep have same device and dtype as sample
|
1081 |
-
alphas_cumprod = self.alphas_cumprod.to(
|
1082 |
-
device=sample.device, dtype=sample.dtype
|
1083 |
-
)
|
1084 |
-
timesteps = timesteps.to(sample.device)
|
1085 |
-
|
1086 |
-
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
|
1087 |
-
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
|
1088 |
-
while len(sqrt_alpha_prod.shape) < len(sample.shape):
|
1089 |
-
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
|
1090 |
-
|
1091 |
-
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
|
1092 |
-
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
|
1093 |
-
while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
|
1094 |
-
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
|
1095 |
-
|
1096 |
-
velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
|
1097 |
-
return velocity
|
1098 |
-
|
1099 |
-
def __len__(self):
|
1100 |
-
return self.config.num_train_timesteps
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pipelines/controlnet.py
CHANGED
@@ -1,8 +1,11 @@
|
|
1 |
-
from diffusers import
|
2 |
-
|
3 |
-
|
|
|
|
|
4 |
from compel import Compel
|
5 |
import torch
|
|
|
6 |
|
7 |
try:
|
8 |
import intel_extension_for_pytorch as ipex # type: ignore
|
@@ -11,80 +14,202 @@ except:
|
|
11 |
|
12 |
import psutil
|
13 |
from config import Args
|
14 |
-
from pydantic import BaseModel
|
15 |
from PIL import Image
|
16 |
-
from typing import Callable
|
17 |
|
18 |
base_model = "SimianLuo/LCM_Dreamshaper_v7"
|
19 |
-
|
20 |
-
|
|
|
|
|
21 |
|
22 |
|
23 |
class Pipeline:
|
|
|
|
|
|
|
|
|
24 |
class InputParams(BaseModel):
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
if args.safety_checker:
|
39 |
-
pipe =
|
|
|
|
|
40 |
else:
|
41 |
-
pipe =
|
|
|
|
|
|
|
|
|
42 |
if args.use_taesd:
|
43 |
-
pipe.vae = AutoencoderTiny.from_pretrained(
|
44 |
-
|
45 |
)
|
46 |
-
|
47 |
-
pipe.set_progress_bar_config(disable=True)
|
48 |
-
pipe.to(device=device, dtype=torch_dtype)
|
49 |
-
pipe.unet.to(memory_format=torch.channels_last)
|
50 |
|
51 |
# check if computer has less than 64GB of RAM using sys or os
|
52 |
if psutil.virtual_memory().total < 64 * 1024**3:
|
53 |
-
pipe.enable_attention_slicing()
|
54 |
|
55 |
if args.torch_compile:
|
56 |
-
pipe.unet = torch.compile(
|
57 |
-
|
|
|
|
|
|
|
|
|
58 |
|
59 |
-
pipe(
|
|
|
|
|
|
|
|
|
60 |
|
61 |
-
compel_proc = Compel(
|
62 |
-
tokenizer=pipe.tokenizer,
|
63 |
-
text_encoder=pipe.text_encoder,
|
64 |
truncate_long_prompts=False,
|
65 |
)
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
-
return
|
|
|
1 |
+
from diffusers import (
|
2 |
+
StableDiffusionControlNetImg2ImgPipeline,
|
3 |
+
AutoencoderTiny,
|
4 |
+
ControlNetModel,
|
5 |
+
)
|
6 |
from compel import Compel
|
7 |
import torch
|
8 |
+
from pipelines.utils.canny_gpu import SobelOperator
|
9 |
|
10 |
try:
|
11 |
import intel_extension_for_pytorch as ipex # type: ignore
|
|
|
14 |
|
15 |
import psutil
|
16 |
from config import Args
|
17 |
+
from pydantic import BaseModel, Field
|
18 |
from PIL import Image
|
|
|
19 |
|
20 |
base_model = "SimianLuo/LCM_Dreamshaper_v7"
|
21 |
+
taesd_model = "madebyollin/taesd"
|
22 |
+
controlnet_model = "lllyasviel/control_v11p_sd15_canny"
|
23 |
+
|
24 |
+
default_prompt = "Portrait of The Terminator with , glare pose, detailed, intricate, full of colour, cinematic lighting, trending on artstation, 8k, hyperrealistic, focused, extreme details, unreal engine 5 cinematic, masterpiece"
|
25 |
|
26 |
|
27 |
class Pipeline:
|
28 |
+
class Info(BaseModel):
|
29 |
+
name: str = "txt2img"
|
30 |
+
description: str = "Generates an image from a text prompt"
|
31 |
+
|
32 |
class InputParams(BaseModel):
|
33 |
+
prompt: str = Field(
|
34 |
+
default_prompt,
|
35 |
+
title="Prompt",
|
36 |
+
field="textarea",
|
37 |
+
id="prompt",
|
38 |
+
)
|
39 |
+
seed: int = Field(
|
40 |
+
2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
|
41 |
+
)
|
42 |
+
steps: int = Field(
|
43 |
+
4, min=2, max=15, title="Steps", field="range", hide=True, id="steps"
|
44 |
+
)
|
45 |
+
width: int = Field(
|
46 |
+
512, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
|
47 |
+
)
|
48 |
+
height: int = Field(
|
49 |
+
512, min=2, max=15, title="Height", disabled=True, hide=True, id="height"
|
50 |
+
)
|
51 |
+
guidance_scale: float = Field(
|
52 |
+
0.2,
|
53 |
+
min=0,
|
54 |
+
max=2,
|
55 |
+
step=0.001,
|
56 |
+
title="Guidance Scale",
|
57 |
+
field="range",
|
58 |
+
hide=True,
|
59 |
+
id="guidance_scale",
|
60 |
+
)
|
61 |
+
strength: float = Field(
|
62 |
+
0.5,
|
63 |
+
min=0.25,
|
64 |
+
max=1.0,
|
65 |
+
step=0.001,
|
66 |
+
title="Strength",
|
67 |
+
field="range",
|
68 |
+
hide=True,
|
69 |
+
id="strength",
|
70 |
+
)
|
71 |
+
controlnet_scale: float = Field(
|
72 |
+
0.8,
|
73 |
+
min=0,
|
74 |
+
max=1.0,
|
75 |
+
step=0.001,
|
76 |
+
title="Controlnet Scale",
|
77 |
+
field="range",
|
78 |
+
hide=True,
|
79 |
+
id="controlnet_scale",
|
80 |
+
)
|
81 |
+
controlnet_start: float = Field(
|
82 |
+
0.0,
|
83 |
+
min=0,
|
84 |
+
max=1.0,
|
85 |
+
step=0.001,
|
86 |
+
title="Controlnet Start",
|
87 |
+
field="range",
|
88 |
+
hide=True,
|
89 |
+
id="controlnet_start",
|
90 |
+
)
|
91 |
+
controlnet_end: float = Field(
|
92 |
+
1.0,
|
93 |
+
min=0,
|
94 |
+
max=1.0,
|
95 |
+
step=0.001,
|
96 |
+
title="Controlnet End",
|
97 |
+
field="range",
|
98 |
+
hide=True,
|
99 |
+
id="controlnet_end",
|
100 |
+
)
|
101 |
+
canny_low_threshold: float = Field(
|
102 |
+
0.31,
|
103 |
+
min=0,
|
104 |
+
max=1.0,
|
105 |
+
step=0.001,
|
106 |
+
title="Canny Low Threshold",
|
107 |
+
field="range",
|
108 |
+
hide=True,
|
109 |
+
id="canny_low_threshold",
|
110 |
+
)
|
111 |
+
canny_high_threshold: float = Field(
|
112 |
+
0.125,
|
113 |
+
min=0,
|
114 |
+
max=1.0,
|
115 |
+
step=0.001,
|
116 |
+
title="Canny High Threshold",
|
117 |
+
field="range",
|
118 |
+
hide=True,
|
119 |
+
id="canny_high_threshold",
|
120 |
+
)
|
121 |
+
debug_canny: bool = Field(
|
122 |
+
False,
|
123 |
+
title="Debug Canny",
|
124 |
+
field="checkbox",
|
125 |
+
hide=True,
|
126 |
+
id="debug_canny",
|
127 |
+
)
|
128 |
+
image: bool = True
|
129 |
+
|
130 |
+
def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype):
|
131 |
+
controlnet_canny = ControlNetModel.from_pretrained(
|
132 |
+
controlnet_model, torch_dtype=torch_dtype
|
133 |
+
).to(device)
|
134 |
if args.safety_checker:
|
135 |
+
self.pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
|
136 |
+
base_model, controlnet=controlnet_canny
|
137 |
+
)
|
138 |
else:
|
139 |
+
self.pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
|
140 |
+
base_model,
|
141 |
+
safety_checker=None,
|
142 |
+
controlnet=controlnet_canny,
|
143 |
+
)
|
144 |
if args.use_taesd:
|
145 |
+
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
146 |
+
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
147 |
)
|
148 |
+
self.canny_torch = SobelOperator(device=device)
|
149 |
+
self.pipe.set_progress_bar_config(disable=True)
|
150 |
+
self.pipe.to(device=device, dtype=torch_dtype)
|
151 |
+
self.pipe.unet.to(memory_format=torch.channels_last)
|
152 |
|
153 |
# check if computer has less than 64GB of RAM using sys or os
|
154 |
if psutil.virtual_memory().total < 64 * 1024**3:
|
155 |
+
self.pipe.enable_attention_slicing()
|
156 |
|
157 |
if args.torch_compile:
|
158 |
+
self.pipe.unet = torch.compile(
|
159 |
+
self.pipe.unet, mode="reduce-overhead", fullgraph=True
|
160 |
+
)
|
161 |
+
self.pipe.vae = torch.compile(
|
162 |
+
self.pipe.vae, mode="reduce-overhead", fullgraph=True
|
163 |
+
)
|
164 |
|
165 |
+
self.pipe(
|
166 |
+
prompt="warmup",
|
167 |
+
image=[Image.new("RGB", (768, 768))],
|
168 |
+
control_image=[Image.new("RGB", (768, 768))],
|
169 |
+
)
|
170 |
|
171 |
+
self.compel_proc = Compel(
|
172 |
+
tokenizer=self.pipe.tokenizer,
|
173 |
+
text_encoder=self.pipe.text_encoder,
|
174 |
truncate_long_prompts=False,
|
175 |
)
|
176 |
|
177 |
+
def predict(self, params: "Pipeline.InputParams") -> Image.Image:
|
178 |
+
generator = torch.manual_seed(params.seed)
|
179 |
+
prompt_embeds = self.compel_proc(params.prompt)
|
180 |
+
control_image = self.canny_torch(
|
181 |
+
params.image, params.canny_low_threshold, params.canny_high_threshold
|
182 |
+
)
|
183 |
+
|
184 |
+
results = self.pipe(
|
185 |
+
image=params.image,
|
186 |
+
control_image=control_image,
|
187 |
+
prompt_embeds=prompt_embeds,
|
188 |
+
generator=generator,
|
189 |
+
strength=params.strength,
|
190 |
+
num_inference_steps=params.steps,
|
191 |
+
guidance_scale=params.guidance_scale,
|
192 |
+
width=params.width,
|
193 |
+
height=params.height,
|
194 |
+
output_type="pil",
|
195 |
+
controlnet_conditioning_scale=params.controlnet_scale,
|
196 |
+
control_guidance_start=params.controlnet_start,
|
197 |
+
control_guidance_end=params.controlnet_end,
|
198 |
+
)
|
199 |
+
|
200 |
+
nsfw_content_detected = (
|
201 |
+
results.nsfw_content_detected[0]
|
202 |
+
if "nsfw_content_detected" in results
|
203 |
+
else False
|
204 |
+
)
|
205 |
+
if nsfw_content_detected:
|
206 |
+
return None
|
207 |
+
result_image = results.images[0]
|
208 |
+
if params.debug_canny:
|
209 |
+
# paste control_image on top of result_image
|
210 |
+
w0, h0 = (200, 200)
|
211 |
+
control_image = control_image.resize((w0, h0))
|
212 |
+
w1, h1 = result_image.size
|
213 |
+
result_image.paste(control_image, (w1 - w0, h1 - h0))
|
214 |
|
215 |
+
return result_image
|
pipelines/txt2img.py
CHANGED
@@ -11,7 +11,6 @@ import psutil
|
|
11 |
from config import Args
|
12 |
from pydantic import BaseModel, Field
|
13 |
from PIL import Image
|
14 |
-
from typing import Callable
|
15 |
|
16 |
base_model = "SimianLuo/LCM_Dreamshaper_v7"
|
17 |
taesd_model = "madebyollin/taesd"
|
@@ -29,22 +28,19 @@ class Pipeline:
|
|
29 |
default_prompt,
|
30 |
title="Prompt",
|
31 |
field="textarea",
|
|
|
32 |
)
|
33 |
-
seed: int = Field(
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
max=
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
hide=True,
|
42 |
)
|
43 |
-
|
44 |
-
steps: int = Field(4, min=2, max=15, title="Steps", field="range", hide=True)
|
45 |
-
width: int = Field(512, min=2, max=15, title="Width", disabled=True, hide=True)
|
46 |
height: int = Field(
|
47 |
-
512, min=2, max=15, title="Height", disabled=True, hide=True
|
48 |
)
|
49 |
guidance_scale: float = Field(
|
50 |
8.0,
|
@@ -54,6 +50,10 @@ class Pipeline:
|
|
54 |
title="Guidance Scale",
|
55 |
field="range",
|
56 |
hide=True,
|
|
|
|
|
|
|
|
|
57 |
)
|
58 |
|
59 |
def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype):
|
|
|
11 |
from config import Args
|
12 |
from pydantic import BaseModel, Field
|
13 |
from PIL import Image
|
|
|
14 |
|
15 |
base_model = "SimianLuo/LCM_Dreamshaper_v7"
|
16 |
taesd_model = "madebyollin/taesd"
|
|
|
28 |
default_prompt,
|
29 |
title="Prompt",
|
30 |
field="textarea",
|
31 |
+
id="prompt",
|
32 |
)
|
33 |
+
seed: int = Field(
|
34 |
+
2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
|
35 |
+
)
|
36 |
+
steps: int = Field(
|
37 |
+
4, min=2, max=15, title="Steps", field="range", hide=True, id="steps"
|
38 |
+
)
|
39 |
+
width: int = Field(
|
40 |
+
512, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
|
|
|
41 |
)
|
|
|
|
|
|
|
42 |
height: int = Field(
|
43 |
+
512, min=2, max=15, title="Height", disabled=True, hide=True, id="height"
|
44 |
)
|
45 |
guidance_scale: float = Field(
|
46 |
8.0,
|
|
|
50 |
title="Guidance Scale",
|
51 |
field="range",
|
52 |
hide=True,
|
53 |
+
id="guidance_scale",
|
54 |
+
)
|
55 |
+
image: bool = Field(
|
56 |
+
True, title="Image", field="checkbox", hide=True, id="image"
|
57 |
)
|
58 |
|
59 |
def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype):
|
canny_gpu.py → pipelines/utils/canny_gpu.py
RENAMED
File without changes
|
requirements.txt
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
diffusers
|
2 |
transformers==4.34.1
|
3 |
gradio==3.50.2
|
4 |
--extra-index-url https://download.pytorch.org/whl/cu121;
|
|
|
1 |
+
git+https://github.com/huggingface/diffusers@c697f524761abd2314c030221a3ad2f7791eab4e
|
2 |
transformers==4.34.1
|
3 |
gradio==3.50.2
|
4 |
--extra-index-url https://download.pytorch.org/whl/cu121;
|
user_queue.py
CHANGED
@@ -1,18 +1,29 @@
|
|
1 |
from typing import Dict, Union
|
2 |
from uuid import UUID
|
3 |
-
|
4 |
from PIL import Image
|
5 |
-
from typing import
|
6 |
-
from uuid import UUID
|
7 |
-
from asyncio import Queue
|
8 |
from PIL import Image
|
9 |
|
|
|
10 |
UserId = UUID
|
|
|
11 |
|
12 |
-
InputParams = dict
|
13 |
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
-
UserQueueDict = Dict[UserId, Queue[QueueContent]]
|
17 |
|
18 |
-
|
|
|
|
1 |
from typing import Dict, Union
|
2 |
from uuid import UUID
|
3 |
+
import asyncio
|
4 |
from PIL import Image
|
5 |
+
from typing import Dict, Union
|
|
|
|
|
6 |
from PIL import Image
|
7 |
|
8 |
+
InputParams = dict
|
9 |
UserId = UUID
|
10 |
+
EventDataContent = Dict[str, InputParams]
|
11 |
|
|
|
12 |
|
13 |
+
class UserDataEvent:
|
14 |
+
def __init__(self):
|
15 |
+
self.data_event = asyncio.Event()
|
16 |
+
self.data_content: EventDataContent = {}
|
17 |
+
|
18 |
+
def update_data(self, new_data: EventDataContent):
|
19 |
+
self.data_content = new_data
|
20 |
+
self.data_event.set()
|
21 |
+
|
22 |
+
async def wait_for_data(self) -> EventDataContent:
|
23 |
+
await self.data_event.wait()
|
24 |
+
self.data_event.clear()
|
25 |
+
return self.data_content
|
26 |
|
|
|
27 |
|
28 |
+
UserDataEventMap = Dict[UserId, UserDataEvent]
|
29 |
+
user_data_events: UserDataEventMap = {}
|