File size: 4,798 Bytes
7f871a4
 
 
 
 
 
 
 
 
 
ee20381
 
 
 
 
 
 
8f77a4e
 
 
ee20381
 
 
 
8f77a4e
c92b67b
ee20381
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f871a4
 
 
 
8e89c60
ee20381
8e89c60
 
7f871a4
 
 
 
 
 
 
 
 
 
 
8f77a4e
 
e12a439
 
d58e400
8f77a4e
 
 
 
 
ee20381
4eeb78b
ee20381
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f871a4
 
 
ee20381
 
 
7f871a4
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import numpy as np
import PIL.Image
import torch
from typing import List
from diffusers.utils import numpy_to_pil
from diffusers import StableCascadeDecoderPipeline, StableCascadePriorPipeline
from diffusers.pipelines.wuerstchen import DEFAULT_STAGE_C_TIMESTEPS
from fastapi import FastAPI
import uvicorn
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import RedirectResponse, StreamingResponse
import io
import os
from pathlib import Path
from db import Database
import uuid
import logging
from fastapi import FastAPI, Request, HTTPException
from fastapi.middleware.cors import CORSMiddleware

logging.basicConfig(level=os.environ.get("LOGLEVEL", "INFO"))

MAX_SEED = np.iinfo(np.int32).max
USE_TORCH_COMPILE = os.environ.get("USE_TORCH_COMPILE", "0") == "1"
SPACE_ID = os.environ.get("SPACE_ID", "")
DEV = os.environ.get("DEV", "0") == "1"

DB_PATH = Path("/data/cache") if SPACE_ID else Path("./cache")
IMGS_PATH = DB_PATH / "imgs"
DB_PATH.mkdir(exist_ok=True, parents=True)
IMGS_PATH.mkdir(exist_ok=True, parents=True)

database = Database(DB_PATH)

dtype = torch.bfloat16
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if torch.cuda.is_available():
    prior_pipeline = StableCascadePriorPipeline.from_pretrained(
        "stabilityai/stable-cascade-prior", torch_dtype=dtype
    )  # .to(device)
    decoder_pipeline = StableCascadeDecoderPipeline.from_pretrained(
        "stabilityai/stable-cascade", torch_dtype=dtype
    )  # .to(device)
    prior_pipeline.to(device)
    decoder_pipeline.to(device)

    if USE_TORCH_COMPILE:
        prior_pipeline.prior = torch.compile(
            prior_pipeline.prior, mode="reduce-overhead", fullgraph=True
        )
        decoder_pipeline.decoder = torch.compile(
            decoder_pipeline.decoder, mode="max-autotune", fullgraph=True
        )


def generate(
    prompt: str,
    negative_prompt: str = "",
    seed: int = 0,
    width: int = 1024,
    height: int = 1024,
    prior_num_inference_steps: int = 20,
    prior_guidance_scale: float = 4.0,
    decoder_num_inference_steps: int = 10,
    decoder_guidance_scale: float = 0.0,
    num_images_per_prompt: int = 2,
) -> PIL.Image.Image:

    generator = torch.Generator().manual_seed(seed)
    prior_output = prior_pipeline(
        prompt=prompt,
        height=height,
        width=width,
        num_inference_steps=prior_num_inference_steps,
        timesteps=DEFAULT_STAGE_C_TIMESTEPS,
        negative_prompt=negative_prompt,
        guidance_scale=prior_guidance_scale,
        num_images_per_prompt=num_images_per_prompt,
        generator=generator,
    )
    decoder_output = decoder_pipeline(
        image_embeddings=prior_output.image_embeddings,
        prompt=prompt,
        num_inference_steps=decoder_num_inference_steps,
        # timesteps=decoder_timesteps,
        guidance_scale=decoder_guidance_scale,
        negative_prompt=negative_prompt,
        generator=generator,
        output_type="pil",
    ).images

    return decoder_output[0]


app = FastAPI()
origins = [
    "https://huggingface.co",
    "http://huggingface.co",
    "https://huggingface.co/"
    "http://huggingface.co/",
]

app.add_middleware(
    CORSMiddleware,
    allow_origins=origins,
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)


@app.middleware("http")
async def validate_origin(request: Request, call_next):
    logging.info(f"Request from {request.headers.get('referer')}")
    logging.info(f"Request from {request.headers}")
    if request.headers.get("referer") not in origins and not DEV:
        raise HTTPException(status_code=403, detail="Forbidden")
    response = await call_next(request)
    return response


@app.get("/image")
async def generate_image(prompt: str, negative_prompt: str = "", seed: int = 2134213213):
    cached_img = database.check(prompt, negative_prompt, seed)
    if cached_img:
        logging.info(f"Image found in cache: {cached_img[0]}")
        return StreamingResponse(open(cached_img[0], "rb"), media_type="image/jpeg")

    logging.info(f"Image not found in cache, generating new image")
    pil_image = generate(prompt, negative_prompt, seed)
    img_id = str(uuid.uuid4())
    img_path = IMGS_PATH / f"{img_id}.jpg"
    pil_image.save(img_path)
    img_io = io.BytesIO()
    pil_image.save(img_io, "JPEG")
    img_io.seek(0)
    database.insert(prompt, negative_prompt, str(img_path), seed)

    return StreamingResponse(img_io, media_type="image/jpeg")


@app.get("/")
async def main():
    # redirect to https://huggingface.co/spaces/multimodalart/stable-cascade
    return RedirectResponse(
        "https://multimodalart-stable-cascade.hf.space/?__theme=system"
    )


if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=7860)