Spaces:
Sleeping
Sleeping
File size: 9,807 Bytes
7f871a4 ee20381 7f871a4 ee20381 7f871a4 ee20381 7f871a4 ee20381 7f871a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
import numpy as np
import PIL.Image
import torch
from typing import List
from diffusers.utils import numpy_to_pil
from diffusers import StableCascadeDecoderPipeline, StableCascadePriorPipeline
from diffusers.pipelines.wuerstchen import DEFAULT_STAGE_C_TIMESTEPS
from fastapi import FastAPI
import uvicorn
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import RedirectResponse, StreamingResponse
import io
import os
from pathlib import Path
from db import Database
import uuid
import logging
logging.basicConfig(level=os.environ.get("LOGLEVEL", "INFO"))
MAX_SEED = np.iinfo(np.int32).max
USE_TORCH_COMPILE = os.environ.get("USE_TORCH_COMPILE", "0") == "1"
SPACE_ID = os.environ.get('SPACE_ID', '')
DB_PATH = Path("/data/cache") if SPACE_ID else Path("./cache")
IMGS_PATH = DB_PATH / "imgs"
DB_PATH.mkdir(exist_ok=True, parents=True)
IMGS_PATH.mkdir(exist_ok=True, parents=True)
database = Database(DB_PATH)
with database() as db:
cursor = db.cursor()
cursor.execute("SELECT * FROM cache")
print(list(cursor.fetchall()))
dtype = torch.bfloat16
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if torch.cuda.is_available():
prior_pipeline = StableCascadePriorPipeline.from_pretrained(
"stabilityai/stable-cascade-prior", torch_dtype=dtype
) # .to(device)
decoder_pipeline = StableCascadeDecoderPipeline.from_pretrained(
"stabilityai/stable-cascade", torch_dtype=dtype
) # .to(device)
prior_pipeline.to(device)
decoder_pipeline.to(device)
if USE_TORCH_COMPILE:
prior_pipeline.prior = torch.compile(
prior_pipeline.prior, mode="reduce-overhead", fullgraph=True
)
decoder_pipeline.decoder = torch.compile(
decoder_pipeline.decoder, mode="max-autotune", fullgraph=True
)
def generate(
prompt: str,
negative_prompt: str = "",
seed: int = 0,
width: int = 1024,
height: int = 1024,
prior_num_inference_steps: int = 20,
prior_guidance_scale: float = 4.0,
decoder_num_inference_steps: int = 10,
decoder_guidance_scale: float = 0.0,
num_images_per_prompt: int = 2,
) -> PIL.Image.Image:
generator = torch.Generator().manual_seed(seed)
prior_output = prior_pipeline(
prompt=prompt,
height=height,
width=width,
num_inference_steps=prior_num_inference_steps,
timesteps=DEFAULT_STAGE_C_TIMESTEPS,
negative_prompt=negative_prompt,
guidance_scale=prior_guidance_scale,
num_images_per_prompt=num_images_per_prompt,
generator=generator,
)
decoder_output = decoder_pipeline(
image_embeddings=prior_output.image_embeddings,
prompt=prompt,
num_inference_steps=decoder_num_inference_steps,
# timesteps=decoder_timesteps,
guidance_scale=decoder_guidance_scale,
negative_prompt=negative_prompt,
generator=generator,
output_type="pil",
).images
return decoder_output[0]
app = FastAPI()
origins = [
"http://huggingface.co",
]
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.get("/image")
async def generate_image(prompt: str, negative_prompt: str, seed: int = 2134213213):
cached_img = database.check(prompt, negative_prompt, seed)
if cached_img:
logging.info(f"Image found in cache: {cached_img[0]}")
return StreamingResponse(open(cached_img[0], "rb"), media_type="image/jpeg")
logging.info(f"Image not found in cache, generating new image")
pil_image = generate(prompt, negative_prompt, seed)
img_id = str(uuid.uuid4())
img_path = IMGS_PATH / f"{img_id}.jpg"
pil_image.save(img_path)
img_io = io.BytesIO()
pil_image.save(img_io, "JPEG")
img_io.seek(0)
database.insert(prompt, negative_prompt, str(img_path), seed)
return StreamingResponse(img_io, media_type="image/jpeg")
@app.get("/")
async def main():
# redirect to https://huggingface.co/spaces/multimodalart/stable-cascade
return RedirectResponse(
"https://multimodalart-stable-cascade.hf.space/?__theme=system"
)
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860)
# else:
# prior_pipeline = None
# decoder_pipeline = None
# def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
# if randomize_seed:
# seed = random.randint(0, MAX_SEED)
# return seed
# def generate(
# prompt: str,
# negative_prompt: str = "",
# seed: int = 0,
# width: int = 1024,
# height: int = 1024,
# prior_num_inference_steps: int = 30,
# # prior_timesteps: List[float] = None,
# prior_guidance_scale: float = 4.0,
# decoder_num_inference_steps: int = 12,
# # decoder_timesteps: List[float] = None,
# decoder_guidance_scale: float = 0.0,
# num_images_per_prompt: int = 2,
# progress=gr.Progress(track_tqdm=True),
# ) -> PIL.Image.Image:
# generator = torch.Generator().manual_seed(seed)
# prior_output = prior_pipeline(
# prompt=prompt,
# height=height,
# width=width,
# num_inference_steps=prior_num_inference_steps,
# timesteps=DEFAULT_STAGE_C_TIMESTEPS,
# negative_prompt=negative_prompt,
# guidance_scale=prior_guidance_scale,
# num_images_per_prompt=num_images_per_prompt,
# generator=generator,
# )
# decoder_output = decoder_pipeline(
# image_embeddings=prior_output.image_embeddings,
# prompt=prompt,
# num_inference_steps=decoder_num_inference_steps,
# # timesteps=decoder_timesteps,
# guidance_scale=decoder_guidance_scale,
# negative_prompt=negative_prompt,
# generator=generator,
# output_type="pil",
# ).images
# return decoder_output[0]
# examples = [
# "An astronaut riding a green horse",
# "A mecha robot in a favela by Tarsila do Amaral",
# "The sprirt of a Tamagotchi wandering in the city of Los Angeles",
# "A delicious feijoada ramen dish"
# ]
# with gr.Blocks() as demo:
# gr.Markdown(DESCRIPTION)
# gr.DuplicateButton(
# value="Duplicate Space for private use",
# elem_id="duplicate-button",
# visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
# )
# with gr.Group():
# with gr.Row():
# prompt = gr.Text(
# label="Prompt",
# show_label=False,
# max_lines=1,
# placeholder="Enter your prompt",
# container=False,
# )
# run_button = gr.Button("Run", scale=0)
# result = gr.Image(label="Result", show_label=False)
# with gr.Accordion("Advanced options", open=False):
# negative_prompt = gr.Text(
# label="Negative prompt",
# max_lines=1,
# placeholder="Enter a Negative Prompt",
# )
# seed = gr.Slider(
# label="Seed",
# minimum=0,
# maximum=MAX_SEED,
# step=1,
# value=0,
# )
# randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
# with gr.Row():
# width = gr.Slider(
# label="Width",
# minimum=1024,
# maximum=1536,
# step=512,
# value=1024,
# )
# height = gr.Slider(
# label="Height",
# minimum=1024,
# maximum=1536,
# step=512,
# value=1024,
# )
# num_images_per_prompt = gr.Slider(
# label="Number of Images",
# minimum=1,
# maximum=2,
# step=1,
# value=1,
# )
# with gr.Row():
# prior_guidance_scale = gr.Slider(
# label="Prior Guidance Scale",
# minimum=0,
# maximum=20,
# step=0.1,
# value=4.0,
# )
# prior_num_inference_steps = gr.Slider(
# label="Prior Inference Steps",
# minimum=10,
# maximum=30,
# step=1,
# value=20,
# )
# decoder_guidance_scale = gr.Slider(
# label="Decoder Guidance Scale",
# minimum=0,
# maximum=0,
# step=0.1,
# value=0.0,
# )
# decoder_num_inference_steps = gr.Slider(
# label="Decoder Inference Steps",
# minimum=4,
# maximum=12,
# step=1,
# value=10,
# )
# gr.Examples(
# examples=examples,
# inputs=prompt,
# outputs=result,
# fn=generate,
# cache_examples=False,
# )
# inputs = [
# prompt,
# negative_prompt,
# seed,
# width,
# height,
# prior_num_inference_steps,
# # prior_timesteps,
# prior_guidance_scale,
# decoder_num_inference_steps,
# # decoder_timesteps,
# decoder_guidance_scale,
# num_images_per_prompt,
# ]
# gr.on(
# triggers=[prompt.submit, negative_prompt.submit, run_button.click],
# fn=randomize_seed_fn,
# inputs=[seed, randomize_seed],
# outputs=seed,
# queue=False,
# api_name=False,
# ).then(
# fn=generate,
# inputs=inputs,
# outputs=result,
# api_name="run",
# )
# if __name__ == "__main__":
# demo.queue(max_size=20).launch()
|